Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T23:23:42.676Z Has data issue: false hasContentIssue false

Effects of Mechanical Properties of Metal Films on The Adhesion Strength of Cr/Polyimide Interfaces

Published online by Cambridge University Press:  15 February 2011

Jin Won Choi
Affiliation:
Department of Metallurgy and Materials Science, Hong Ik University, Seoul 121–791, Korea
Tae Sung Oh
Affiliation:
Department of Metallurgy and Materials Science, Hong Ik University, Seoul 121–791, Korea
Get access

Abstract

Effects of mechanical properties of Cu/Cr metal films on the peel strength of Cr/PI interfaces have been studied. Cr and Cu thin films were successively sputter-deposited on in-situ RF plasma-treated polyimides, and 20 μm-thick Cu was electroplated. With increasing the yield strength of Cu/Cr films from 156 MPa to 325 MPa, peel strength of Cr/PMDA-ODA and Cr/BPDA-PDA were lowered from 75 g/mam to 57 g/mm and from 69 g/mm to 20 g/mm, respectively. With identical Cu/Cr metal films, lower peel strength was obtained on Cr/BPDA-PDA interfaces, compared to the values of Cr/PMDA-ODA. Peel strength was also decreased more pronouncedly on Cr/BPDA-PDA with increasing the yield strength of Cu/Cr metal films. With T/H (80°C/94% R.H.) exposure, however, peel strength was lowered much more pronouncedly on Cr/PMDA-ODA than on Cr/BPDA-PDA, especially for specimens with Cu/Cr metal films of lower yield strength.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tummala, R. R. and Rymaszewski, E. J., Microelectronic Packaging Handbook, VSR, New York (1989).Google Scholar
2. Matienzo, L. J., Emmi, F., Vanhart, D. C., and Lo, J. C., J. Vac Sci. TechnoL., A 9, 1278 (1991).Google Scholar
3. David, G. D., Rees, B. J., and Whisnant, D. L., J. Vac, Sci. Technol., A12, 2378 (1994).Google Scholar
4. Anderson, S. G., Leu, J., Silverman, B. D., and Ho, P. S., J. Vac- Sci. Technol., All, 368 (1993).Google Scholar
5. Sengupta, K. S., and Birnbaum, H. K., J. Vac. Sci. Technol., A9, 2928 (1991).Google Scholar
6. Oh, T. S., Kowalczyk, S. P., Hunt, D. J. and Kim, J., J. Adh. Sci. Technol., 4, 119 (1990).Google Scholar
7. Shin, D-Y., Klymko, N., Flitsch, R., Paraszczac, J., and Nunes, S., J. Vacr Sci Technol., A9, 2963 (1991).Google Scholar
8. Nakayama, Y., Baltzer, P., Wannberg, B., and Gelius, U., J. Var- Sci. TechnoL, A12, 772 (1994).Google Scholar
9. Pappas, D. L., and Cuomo, Jerome J., J. Vac Sci. Technol., A9, 2704 (1991).Google Scholar
10. Baglin, J. E. E., Nucd. Instr. and Meth, B39, 764 (1989)Google Scholar
11. Jeong, H. S. and White, R. C., J. Vacr ScL Technol., A11, 1373 (1993).Google Scholar
12. Kim, J., Kim, K. S. and Kim, Y. H., J. Vac Sci Technol., A3, 175 (1989).Google Scholar
13. Kim, K. S., and Kim, J., J. Eng. Master. Technol., 110, 266 (1988).Google Scholar
14. Gent, A. N. and Hamed, G. R., J. AppL. Polymer Sci., 21, 2717 (1977).Google Scholar
15. Dieter, G. E., Mechanical Metallurgy, p.222, McGraw Hill, London (1988).Google Scholar
16. Furman, B. K., Childs, K. D., Clearfield, H., David, R., Purushothaman, S., J. Adh. Sci. Technol., 10. 2913 (1992).Google Scholar
17. Pan, J. T. and Poon, S., Mat. Res Sympo. Proc., 154, 27 (1989).Google Scholar
18. Yang, C. H. and Chen, P. C., Mat. Res. Sympo. Proc., 154, 335 (1989).Google Scholar