Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T02:11:14.189Z Has data issue: false hasContentIssue false

Effects of Magnetic and Non-Magnetic Impurity Addition on Magnetoresistance Behavior of Lanthanum Manganite Thin Films

Published online by Cambridge University Press:  10 February 2011

Srinivas V. Pietambaram
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611-6400.
D. Kumar
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611-6400.
Rajiv K. Singh
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611-6400.
C. B. Lee
Affiliation:
Department of Electrical Engineering, North Carolina A & T State University, Greensboro, North Carolina 27411.
Get access

Abstract

In this paper, we report our studies on the growth, structural, magnetotransport and magnetic properties of La1−x,CaxMnO3: Co/Ag. Thin films of these materials were grown in situ on (100) LaAlO3 substrates using a pulsed laser deposition technique. Microstructural characterization carried out on these films show that the films are single phase, textured and smooth. The temperature dependence of resistance of the films in the 10 – 300 K range was examined in zero and applied field using four-probe technique and magnetization measurements were carried out using the quantum design superconducting quantum interference device (SQUID) magnetometer. The MR ratios of La0.7Ca0.3MMnO3, Ag added La0.7CaM0.3MnO3 and Co added La0.7CaM0.3MnO3 films were found to be 200%, 3.4 × 104% and 660% in 5 T and 21%, 435% and 30% in 0.1 T respectively. The enhanced MR ratio in the case of Ag added La0.7Ca0.3MMnO3 films is attributed to the increase in the oxygen content and in the case of Co added La0.7Ca0.3MMnO3, it can be attributed to the Co supplying some additional magnetic field.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Searle, C. W. and Wang, S. T., Can. J. Phys. 47, 2703 (1969).Google Scholar
2. von Helmont, R., Wecker, J., Holzapfel, B., Schultz, L., and Samwer, K., Phys. Rev. Lett. 71, 2331 (1993).Google Scholar
3. Chahara, K., ohno, T., Kasai, M., and Kozono, Y., Appl. Phys. Lett. 63, 990 (1993).Google Scholar
4. Jin, S., Tiefel, T. H., McCormack, M., Fastnatch, R. A., Ramesh, R., and Chen, L. H., Science 264, 413 (1994).Google Scholar
5. Ju, H. L., Kwon, C., Li, Qi, Greene, R. L., and Venkatesan, T., Appl. Phys. Lett. 65, 2108 (1994).Google Scholar
6. Jonker, G. H. and Van Santen, J. H., Physica (Amsterdam) 17, 337 (1950).Google Scholar
7. Zener, C., Phys. Rev. 82, 403 (1951).Google Scholar
8. De Gennes, P. G., Phys. Rev. 118, 141 (1959).Google Scholar
9. Peters, P. N., Sisk, R. C., Urban, E. W., Huang, C. Y., and Wu, M. K., Appl. Phys. Lett. 52, 2066 (1988).Google Scholar
10. Matsumoto, Y., Hombo, J., Yamaguchi, Y., Nishida, M., and Chiba, A., Appl. Phys. Lett. 56, 1585 (1990).Google Scholar
11. Singh, R. K., Bhattacharya, D., Tiwari, P., Narayan, J., and Lee, C. B., Appl. Phys. Lett. 60, 255 (1992).Google Scholar
12. Pietambaram, Srinivas V., Kumar, D., Singh, Rajiv K. and Lee, C. B., Phys. Rev. B 58, 8182 (1998).Google Scholar
13. Kumar, D., Sharon, M., Apte, P. R., Pinto, R., Pai, S. P., Purandare, S. C., D'Souza, C. P., Gupta, L. C., Vijayaraghavan, R., J. Appl. Phys. 76, 1348 (1994).Google Scholar
14. Kumar, D., Sharon, M., Apte, P. R., Pinto, R., Pai, S. P., Purandare, S. C., Gupta, L. C., Vijayaraghavan, R., Appl. Phys. Lett., 62, 3522 (1993).Google Scholar
15. Singh, R. K. and Kumar, D., Materials Science & Engineering Reports: A Review Journal, Vol. R22 No.4, 15 April 1998.Google Scholar