Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T17:49:30.528Z Has data issue: false hasContentIssue false

Effects of Lattice Distortion, Polaron Conduction and Double-Exchange Interaction on the Physical Properties of Magnetoresistive Manganites and Cobaltites

Published online by Cambridge University Press:  15 February 2011

N.-C. Yeh
Affiliation:
Department of Physics, California Institute of Technology, Pasadena, CA 91125
R. P. Vasquez
Affiliation:
Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
J. Y. T. Wei
Affiliation:
Department of Physics, California Institute of Technology, Pasadena, CA 91125
C-C. Fu
Affiliation:
Department of Physics, California Institute of Technology, Pasadena, CA 91125
G. Beach
Affiliation:
Department of Physics, California Institute of Technology, Pasadena, CA 91125
J. Huynh
Affiliation:
Department of Physics, California Institute of Technology, Pasadena, CA 91125
A. V. Samoilov
Affiliation:
Department of Physics, California Institute of Technology, Pasadena, CA 91125
A. V. BoriS
Affiliation:
Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka, Moscow 142432, Russia
N. N. Kovaleva
Affiliation:
Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka, Moscow 142432, Russia
A. V. Bazhenov
Affiliation:
Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka, Moscow 142432, Russia
Get access

Abstract

The relevance of lattice distortion, polaron conduction, and double-exchange interaction to the occurrence of colossal magnetoresistance (CMR) is investigated by comparing the physical properties of magnetoresistive manganites and cobaltites. The samples studied in this work include epitaxial films and ceramics of manganites with both A- and B-site substitution, (La0.7Ca0.3MnO3, LaMn0.7 Ni0.3O3, LaMnO.5Ni0.5O3), as well as epitaxial films and ceramics of cobaltites (La0.5Ca0.5CoO3). The structural, chemical, electrical transport, magnetic, optical properties and tunneling spectroscopy are studied. Based on our experimental results, we conclude that both double-exchange interaction and strong electron-phonon coupling due to the Jahn-Teller effect are essential to the occurrence of CMR.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. von Hemlolt, R., Wecker, J., Holzapfel, B., Schultz, L., and Samwer, K., Phys. Rev. Lett. 71, 2331 (1993).Google Scholar
2. Jin, S. et al., Science 264, 413 (1994); Appl. Phys. Lett. 66, 382 (1995); Appl. Phys. Lett. 67, 557 (1995).Google Scholar
3. Hwang, H. Y. et al., Phys. Rev. Lett. 75, 914 (1995).Google Scholar
4. Moritomo, Y. et al., Phys. Rev. B51, 16491 (1995);Google Scholar
Khazeni, K. et al., Phys. Rev. Lett. 76, 295 (1996).Google Scholar
5. Ibarra, M. R. et al., Algarabel, P. A., Marquina, C., Blasco, J., and Garcia, J., Phys. Rev. Lett. 75, 3541 (1995).Google Scholar
6. Zhao, G.-M., Conder, K., Keller, H., and Müller, K. A., Nature 381, 676 (1996).Google Scholar
7. Millis, A. J., Littlewood, P. B., and Shraiman, B. I., Phys. Rev. Lett. 74, 5144 (1995);Google Scholar
Millis, A. J., Shraiman, B. I., and Mueller, R., Phys. Rev. Lett. 77, 175 (1996).Google Scholar
8. Dai, P., Zhang, J. D., Mook, H. A., Liou, S. H., Dowben, P. A. et al., Phys. Rev. B54, 3694 (1996);Google Scholar
Jaime, M., Salamon, M. B., Pettit, K., Rubinstein, M.. Treece, R. E. et al., Appl. Phys. Lett. (1996).Google Scholar
9. Yeh, N.-C., Vasquez, R. P., Beam, D. A., Fu, C-C., Huynh, J., and Beach, G., J. Phys.: Condens. Matter, (1997). (in press).Google Scholar
10. Yeh, N.-C., Fu, C. C., Wei, J. Y. T., Vasquez, R. P., Huynh, J., Maurer, S. M., and Beach, G, J. Appl. Phys. 81, (1997).Google Scholar
11. Goodenough, J. B., Wold, A., Arnott, R. J., and Menyuk, N., Phys. Rev. 124, 373 (1961);Google Scholar
Goodenough, J. B., in “Progress in Solid State Chemistry”, Vol. 5, Pergamon Press (1971), ed. by Reiss, H..Google Scholar
12. Samoilov, A. V., Yeh, N.-C., and Vasquez, R. P., preprint (1997); “Epitaxial Oxide Thin Filme III, Mater. Res. Soc. Proc, San Francisco, (1997).Google Scholar
13. Goodenough, J. B., Wold, A., Arnott, R. J., Menyuk, N., Phys. Rev. 124, 373 (1961).Google Scholar
14. Vasanthacharya, N. Y., Ganguly, P., Goodenough, J. B., and Rao, C. N. R., J. Phys. C: Solid State Phys. 17, 2745 (1984).Google Scholar
15. Wold, A., Arnott, R. J., and Goodenough, J. B., Phys. Rev. 29, 387 (1958).Google Scholar
16. van der Pauw, L. J., Phillips Res. Reports 13, 1 (1958).Google Scholar
17. Boris, A. V., Kovaleva, N. N., Bazhenov, A. V., Samoilov, A. V., Yeh, N.-C. and Vasquez, R. P., J. Appl. Phys. 81, (1997).Google Scholar
18. Vasquez, R. P., Phys. Rev. B54, 14938 (1996).Google Scholar
19. Barman, S. R., Chainani, A., Sarma, D. D., Phys. Rev. B49, 8475 (1994).Google Scholar
20. Moulder, J. F., Stickle, W. F., Sobol, P. E., and Bomben, K. D.., “Handbook of X-ray Photoelectron Spectroscopy”, Perkin-Elmer corp., Eden Prairie, MN (1992).Google Scholar
21. See, for example, Ma, S. K., “Modern Theory of Critical Phenomena”, Addison-Wesley, (1976).Google Scholar
22. White, R. M., “Quantum Theory of Magnetism”, Springer-Verlag, Berlin Heidelberg, (1983).Google Scholar
23. See, for example, Kittel, C., ”Introduction to Solid State Physics”, 6th edition.Google Scholar
24. Feenstra, R. M., Stroscio, J. A., Fein, A. P., Surf. Sci. 181, 295 (1987).Google Scholar
25. Pickett, W. E. and Singh, D. J., Phys. Rev. B53, 1146 (1996).Google Scholar
26. Wei, J. Y. T., Yeh, N.-C., and Vasquez, R. P., to be published.Google Scholar
27. Senaris-Rodriguez, M. A., Goodenough, J. B., J. Solid State Chem. 118, 323 (1995).Google Scholar
28. Hwang, H.Y., Cheong, S.-W., Ong, N.P., Batlogg, B., Phys. Rev. Lett. 77, 2041 (1996).Google Scholar