Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-17T18:23:17.108Z Has data issue: false hasContentIssue false

Effects of Laser Irradiation on Growth and Doping Characteristics of GaAs in Chemical Beam Epitaxy

Published online by Cambridge University Press:  21 February 2011

H. K. Dong
Affiliation:
Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, California 92093-0407
N. Y. Li
Affiliation:
Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, California 92093-0407
C. W. Tu
Affiliation:
Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, California 92093-0407
Get access

Abstract

In this paper, we report laser-assisted chemical beam epitaxy (CBE) of GaAs using triethylgallium (TEGa), tris-dimethylaminoarsenic (TDMAAs), and an ar ion laser operating at visible or ultraviolet (UV) wavelength. the laser-assisted growth with TDMAAs, compared to as4 or asH3, shows a wider range of growth enhancement at low substrate temperatures. Unlike CBE of GaAs without laser irradiation, laser-enhanced GaAs growth rate was found to be constant as the V/III incorporation ratio changes. by using diiodomethane (CI2H2) as a dopant gas, the GaAs films with laser irradiation show a much higher hole concentration than those grown simultaneously without laser irradiation at substrate temperatures from 460-530°C. Laser irradiation was also found to enhance silicon incorporation at low temperatures. Photothermal effects are responsible for laser-enhanced growth and silicon doping, but the wider temperature window in laser-enhanced growth and the laser-enhanced carbon incorporation are caused by additional photocatalytic or photochemical effects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 R. Iga, Yamada, T., and Sugiura, H., Appl. Phys. Lett. 64, 983 (1994).Google Scholar
2 Yamada, T., Iga, R., and Sugiura, H., Appl. Phys. Lett. 61, 2449 (1992).Google Scholar
3 Aoyagi, Y., Kanazawa, M., Doi, A., Iwai, S. and Namba, S., J. appl. Phys. 60, 3131 (1986).Google Scholar
4 M, V.. Donnelly, W, C.. Tu, C, J.. Beggy, R, V.. McCrary, G, M.. Lamont, D, T.. Harris, A, F.. Baiochi and C, R.. Farrow, Appl. Phys. Lett. 52, 1065 (1988).Google Scholar
5 Dong, H. K., Liang, B. W., Ho, M. C., S. Hung and Tu, C. W., J. Cryst. Growth 124, 181 (1992).Google Scholar
6 Sugiura, H., Yamada, T. and Iga, R., Jpn. J. appl. Phys. 29, L1 (1990).Google Scholar
7 Sugiura, H., Iga, R., and Yamada, T., J. Cryst. Growth 120, 389 (1992).Google Scholar
8 Abernathy, C. R., Wisk, P. W., Bohling, D. A., and Muhr, G. T., Appl. Phys. Lett. 60, 2421 (1992).Google Scholar
9 Dong, H. K., Li, N. Y., Tu, C. W., M. Geva, and Mitchel, W. C., J. Electron. Mater. 24, 69 (1995).Google Scholar
10 Zimmermann, G., Protzmann, H., Marschner, T., Zseb, O.ök, Stolz, W., O, E.. Göbel, Gimmnich, P., Lorberth, J., Filz, T., Kurpas, P., and Richter, W., J. Cryst. Growth 129, 37 (1993).Google Scholar
11 Fujii, K., Suemune, I., and Yamanishi, M., Appl. Phys. Lett. 61, 2577 (1992).Google Scholar
12 Sugioka, K., and Toyoda, K., Appl. Phys. Lett. 61, 2817 (1992).Google Scholar
13 Roberts, J. C., Boutros, K. S., and Bedair, S. M., and Look, D. C., Appl. Phys. Lett. 64, 2397 (1994).Google Scholar
14 Ban, Y., Ishizaki, M., Asaka, T., Koyoma, Y., and Kukimoto, H., Jpn. J. Appl. Phys. 28, L1995 (1989).Google Scholar
15 Hung, S. C. H., Dong, H. K., and Tu, C. W., Mater. Res. Soc. Symp. Proc. 340, 35 (1994).Google Scholar
16 Li, N. Y., Dong, H. K., Tu, C. W. and Geva, M., to be published in J. Cryst. Growth (1995).Google Scholar
17 Bohling, D. A., Jensen, K. F., and Abernathy, C. R., J. Cryst. Growth 136, 118 (1994).Google Scholar