Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:39:22.536Z Has data issue: false hasContentIssue false

The Effects of Iron Contamination on Thin Oxide Breakdown -Experimental and Modeling

Published online by Cambridge University Press:  03 September 2012

Worth B. Henley
Affiliation:
Center for Microelectronics Research, University of South Florida
Lubek Jastrzebski
Affiliation:
Center for Microelectronics Research, University of South Florida
Nadim F. Haddad
Affiliation:
IBM Corporation, Manassas, VA
Get access

Abstract

The effect of iron contamination in silicon on the properties of thermally grown thin oxides is studied through electrical modelling and experimental MOSDOT testing. Iron concentration is measured using a surface photovoltage / diffusion length technique. Failure mechanisms related to iron contamination are proposed. Contamination limits for various gate oxide thicknesses are defined. Experimental results show that reduction of oxide thickness from 20nm to lOnm requires a reduction in iron conntamination by 100 times.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jastrzebski, L., in Semiconductor Silicon 1990, (Electrochemical Soc., 1990), p. 614.Google Scholar
2. Lagowski, J., Edelman, P., Dexter, M., Henley, W., Semicon. Sci. Tech., 7, 1992, A85.Google Scholar
3. Ohsawa, A., Honda, K., Takizawa, R., Nakanishi, T., Aoki, M., Toyokura, N., in Semiconductor Silicon 1990, (The Electrochemical Society, 1990), p. 601613.Google Scholar
4. Weber, E., “Transition Metals in Silicon”, Appl. Phys. A, 30, p. 122, (1983).Google Scholar
5. Hiramoto, K., Sano, M., Sadamitsu, S., Fujino, N., J. Appl. Phys., Nov. 1989, p. 21092112.CrossRefGoogle Scholar
6. Weber, E., Gilles, D., in Semiconductor Silicon 1990, (Electrochemical Soc., 1990), p. 585.Google Scholar
7. Honda, K., Ohsawa, A., Toyokura, N., Appl. Phys. Lett., 46, 582, 1985.CrossRefGoogle Scholar
8. Honda, K., Nakanishi, T., Ohsawa, A., Toyokura, N., J. Appl. Phys., 62, 1960, 1987.Google Scholar
9. Landau, L. D., Lifshitz, E. M., Electrodynamics of Continuous Media, Pergamon Press, Oxford, 1960.Google Scholar
10. Pinto, M. R. et al., Pisces II-B, Stanford Elec. Lab, Stanford Univ. Tech. Report., Sept. 1985.Google Scholar
11. Zoth, G. and Bergholz, W., J. Appl. Phys., 67 (11), p. 6764, 1990.Google Scholar
12. Honda, K., Nakanishi, T., Ohsawa, A, Toyokura, N., J. Appl. Phys., 62, 1960, 1987.Google Scholar