Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T00:26:31.170Z Has data issue: false hasContentIssue false

Effects of Interstitial Clustering on Transient Enhanced Diffusion of Boron in Silicon

Published online by Cambridge University Press:  15 February 2011

S. Solmi
Affiliation:
CNR-LAMEL Institute, Via Gobetti, 101 – 40129, Bologna, Italy
S. Valmorri
Affiliation:
CNR-LAMEL Institute, Via Gobetti, 101 – 40129, Bologna, Italy
Get access

Abstract

A simulation model for Boron diffusion which takes into account the aggregation of the excess interstitials in clusters, and subsequently, the dissolution of these defects, is proposed. The interstitial supersaturation and generation rate are determined according to the classical theory of nucleation and growth of particles, in analogy with the precipitation of a new phase in heavily doped silicon. The clusters are considered as precipitates formed by interstitial Si atoms. The B diffusion is modelled on the basis of the dopant-interstitial pair diffusion mechanism. The clusters dissolution during annealing maintains nearly constant, for a long period, the interstitial supersaturation and the related enhancement of the boron diffusion. This gives a good account of the diffusion results over a large range of experimental conditions. Furthermore, this approach describes most of the behavior of the transient enhanced diffusion (TED), like the temperature dependence of the level of the B diffusion enhancement, the dependence of the duration of the phenomenon on implanted dose, and the scarce dependence on the damage distribution in depth. The results of the simulations are compared with experimental data on the kinetics of interstitial cluster dissolution and of B TED.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Baccus, B., Wada, T., Shigyo, N., Norishima, M., Nakajama, H., Inou, K., linuma, T. and Iwai, H., IEEE Trans. El. Dev., 39, 648 (1992)Google Scholar
2. J.iger, H. U., J. Appl. Phys. 78, 176 (1995)Google Scholar
3. Hane, M. and Matsumoto, H., IEEE Trans. El. Dev., 40, 1215 (1993)Google Scholar
4. Kinoshita, H. and Kwong, D. L., Appl. Phys. Lett., 60, 1202 (1992)Google Scholar
5. Hdfler, A., Feudel, Th., Strecker, N., Fichtner, W., Stegemann, K.-H., Syhre, H. and Dallmann, G., J. Appl. Phys., 78, 3671 (1995)Google Scholar
6. Servidori, M., Angelucci, R., Cembali, F., Negrini, P., Solmi, S., Zaumseil, P., and Winter, U., J. Appl. Phys. 61, 1834 (1987)Google Scholar
7. T. 0. Sedgwick, Michel, A. E., Deline, V. R., Cohen, S. A., and Lasky, J. B., J. Appl. Phys. 63, 1452 (1988)Google Scholar
8. Servidori, M., Sourek, Z., and Solmi, S., J. Appl. Phys. 62, 1723 (1987)Google Scholar
9. Solmi, S., and Servidori, M., in Solid State Phenomena, Eds. Stievenard, D. and Bourgoin, J. C. (Trans. Tech. Publications Ltd.) Vol.1&2 (1988) pp. 65 Google Scholar
10. Cowern, N. E. B., van de Walle, G. F. A., Zalm, P.C., and Vandenhoudt, D. W. E., Appl. Phys. Lett. 65, 2981 (1994)Google Scholar
11. Stolk, P. A., Gossmann, H. -J., Eaglesham, D. J., and Poate, J. M., Nucl. Instr. Meth. B 96, 187 (1995)Google Scholar
12. Claverie, A., Laanab, L., Bonafos, C., Bergaud, C., Martinez, A. and Mathiot, D., Nuc. Instr. Meth. B 96, 202 (1996)Google Scholar
13. Hu, S. M., Materials Science & Engineering, 13, 105 (1994)Google Scholar
14. Christian, J. W., in The Theory of Transformations in Metals and Alloys (Pergamon, New York, 1981), p. 424 Google Scholar
15. Solmi, S., Landi, E. Baruffaldi, F., J. Appl. Phys. 68, 3250 (1990)Google Scholar
16. Solmi, S., Baruffaldi, F., and Derdour, M., J. Appl. Phys. 71, 697 (1992)Google Scholar
17. Poate, J. M., Eaglesham, D. J., Gilmer, G. H., Gossmann, H. J., Jaritz, M., Rafferty, C. S. and Stolk, P. A., Proc. IEDM (1995)Google Scholar
18. Bronner, G. B. and Plummer, J. D., J. Appl. Phys. 61,5286 (1987)Google Scholar
19. Fair, R. B. (Academic Press, New York, 1981), p. 1 Google Scholar
20. Solmi, S., Canteri, F., J. Appl. Phys. 69,2135 (1991)Google Scholar
21. Giles, M. D., J. Electrochem. Soc. 138, 1160 (1991)Google Scholar
22. Solmi, S., 1st International Rapid Thermal Processing Conf. (RTP'93), Fair, R. B. and Lojek, B.Sept. 8–10, 1993, p. 179 Google Scholar
23. Rafferty, C. S., Gilmer, G. H., Jaraiz, M., Eaglesham, D., and Gossmann, H. J., Appl. Phys. Lett. 68, 2395 (1996)Google Scholar