Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-08T20:32:11.688Z Has data issue: false hasContentIssue false

The Effects of in-Situ Processing Methods on the Microstructure and Fracture Toughness of V-V3Si Composites

Published online by Cambridge University Press:  25 February 2011

M. J. Strum
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550.
G. A. Henshall
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550.
B. P. Bewlay
Affiliation:
GE Corporate Research and Development, Schenectady, NY 12301.
J. A. Sutliff
Affiliation:
GE Corporate Research and Development, Schenectady, NY 12301.
M. R. Jackson
Affiliation:
GE Corporate Research and Development, Schenectady, NY 12301.
Get access

Abstract

The present paper describes ductile-phase toughening in V-V3Si in-situ composites that were produced by conventional arc melting (AM), cold-crucible induction melting (IM), and coldcrucible directional solidification (DS). Notched three-point bending tests were performed to determine the effects of synthesis method on the room temperature fracture toughness of eutectic compositions, which contain nearly equal volume fractions of V3Si and the V(Si) solid solution phase. Fracture toughness values ranged from 10 MPa√m for the AM eutectic to over 20 MPa√m for the IM and DS eutectic alloys. SEM fractography, fracture surface profiling, and chemical analyses were performed to correlate the toughness values with the microstructures and interstitial concentrations produced by the three synthesis methods.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sigl, L. S., Mataga, P. A., Dalgleish, B. J., McMeeking, R. M., and Evans, A. G., Acta Metall. 36, 945 (1988).CrossRefGoogle Scholar
2. Deve, H. E., Evans, A. G., Odette, G. R., Mehrabian, R., Emiliani, M. L., and Hecht, R. J., Acta Metall. 38, 1491 (1990).CrossRefGoogle Scholar
3. Xiao, L. and Abbaschian, R., Met. Trans. 23A, 2863 (1992).CrossRefGoogle Scholar
4. Soboyejo, W. O., Rao, K. T., Sastry, S.M.L., and Ritchie, R.O., Met. Trans 24A, 585 (1993).CrossRefGoogle Scholar
5. Lewandowski, J.J., Dimiduk, D., Kerr, W., and Mendiratta, M. G., in High Temperature/High Performance Composites, edited by Lemkey, F. D. et al. (Mater. Res. Soc. Symp. Proc. 120, Reno, NV, 1988), pp 103109.Google Scholar
6. Anton, D. L. and Shah, D. M., in Intermetallic Matrix Composites, edited by Anton, D. L. et al. (Mater. Res. Soc. Symp. Proc. 194, Pittsburg, PA, 1988), pp. 4552.Google Scholar
7. Mendiratta, M. G., Lewandowski, J. J., and Dimiduk, D. M., Met. Trans. 22A, 1573 (1991).CrossRefGoogle Scholar
8. Smith, J. F., Bull. of Alloy Phase Diagrams 6, 266 (1985).CrossRefGoogle Scholar
9. Chang, K-M., Bewlay, B. P., Sutliff, J. A., and Jackson, M. R., J. of Metals 44, 59 (1992).Google Scholar
10. Strum, M. J., Henshall, G. A., in High Temperature Ordered Intermetallic Alloys V, edited by Baker, I. et al. (Mater. Res. Soc. Symp. Proc. 288, Boston, MA), pp. 10931098.Google Scholar
11. Loomis, B. A. and Carlson, O. N. in Reactive Metals, edited by Clough, W. R. (Interscience Publ, New York, 1958), p. 227.Google Scholar
12. Ashby, M. F., Blunt, F. J., and Bannister, M., Acta Metall. 37, 1847 (1989).CrossRefGoogle Scholar
13. Budiansky, B., Amizago, J. C., and Evans, A. G., J. Mech. Phys. Solds 36, 167 (1988).CrossRefGoogle Scholar
14. Ravichandran, K. S., Acta Metall. 40, 3349 (1989).Google Scholar
15. Wetherhold, R. C. and Jain, L. K., Mater. Sci and Engr. A165, 91 (1993).CrossRefGoogle Scholar