Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T16:06:10.188Z Has data issue: false hasContentIssue false

Effects of Hydrogen Post Treatment and Duty Factor on Carbon Nanotube Field Emission Stability

Published online by Cambridge University Press:  01 February 2011

Sigen Wang
Affiliation:
[email protected], University of North Carolina Medical School, Division of Physics & Computing, Department of Radiation Oncology, CB 7512, 101 manning drive, Chapel Hill, NC, 27599-7512, United States, 9199661101, 9199667681
Sha Chang
Affiliation:
[email protected], Medical School, University of North Carolina, Division of Physics & Computing, Department of Radiation Oncology, Chapel Hill, NC, 27599-7512, United States
Get access

Abstract

Carbon nanotubes (CNTs) have been investigated as field emission electron sources for a number of applications such as x-ray source and microwave power amplifier. These applications often require that nanotubes provide a stable field emission at a high emission current. In this paper, we investigated the emission stability of CNTs as functions of hydrogen post-treatment and duty factor. The experimental results show that the hydrogen plasma treatment and a reduced duty cycle from 100% to 35% can noticeably improve the emission stability of CNTs at a high current value of 4 mA. Our study also shows that emission induced anode heating at high duty factor and high emission current level degrades vacuum level and thus the emission stability of CNTs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. deHeer, W. A., Chatelain, A., and Ugarte, D., Science 270, 1179 (1995).Google Scholar
2. Rinzler, A. G., Hafner, J. H., Nikolaev, P., Lou, L., Kim, S. G., Tomanek, D., Nordlander, P., Colbert, D. T., and Smalley, R. E., Science 269, 1550 (1995).Google Scholar
3. Milne, W. I., Teo, K. B. K., Amaratunga, G. A. J., Legagneux, P., Gangloff, L., Schnell, J. –P., Semet, V., Thien Binh, V., and Groening, O., J. Mater. Chem. 14, 1 (2004).Google Scholar
4. Yue, G. Z., Qiu, Q., Gao, B., Cheng, Y., Zhang, J., Shimoda, H., Chang, S., Lu, J. P., and Zhou, O., Appl. Phys. Lett. 81, 355 (2002).Google Scholar
5. Wang, S. G., Wang, J. J., Miraldo, P., Zhu, M. Y., Outlaw, R., Hou, K., Zhao, X., Holloway, B. C., Manos, D., Tyler, T., Shenderova, O., Ray, M., Dalton, J., and McGuire, G., Appl. Phys. Lett. 89, 183103 (2006).Google Scholar
6. Zhu, W., Bower, C., Zhou, O., Kochanski, G., and Jin, S., Appl. Phys. Lett. 75, 873 (1999).Google Scholar
7. Hosono, A., Shiroishi, T., Nishimura, K., Abe, F., Shen, Z., Nakata, S., and Okuda, S., J. Vac. Sci. Technol. B. 24, 1423 (2006).Google Scholar
8. Kim, W. S., Lee, J., Jeong, T. W., Heo, J. N., Kong, B. Y., Jin, Y. W., Kim, J. M., Cho, S. H., Park, J. H., and Choe, D. H., Appl. Phys. Lett. 87, 163112 (2005).Google Scholar
9. Bacsa, W. S., Ugarte, D., Chatelain, A., and der Heer, W. A., Phys. Rev. B. 50, 15473 (1994).Google Scholar
10. Hiura, H., Ebbesen, T. W., Tanigaki, K., and Takahashi, H., Chem. Phys. Lett. 202, 509 (1993).Google Scholar
11. Ruffieux, P., Groning, O., Bielmann, M., Mauron, P., Schlapbach, L., and Groning, P., Phys. Rev. B. 66, 245416 (2002).Google Scholar
12. Fowler, R. H. and Nordheim, L. W., Proc. Roy. Soc. London Ser. A 119, 173 (1928).Google Scholar
13. Chen, P. -L., Chang, J. –K., Kuo, C. –T., and Pan, F. –M., Appl. Phys. Lett. 86, 123111 (2005).Google Scholar
14. Dresselhaus, M. S., Dresselhaus, G., and Eklund, P. C., Science of Fullerenes and Carbon Nanotubes (Academic, San Diego, 1996).Google Scholar