No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
We have studied high-energy ion irradiation effects in bismuth by measuring the electrical resistivity at low temperature in relation to its structural change. Bismuth thin films (330–520 Å thick) are irradiated below ∼10 K with energetic (150–200-MeV) heavy ions. The resistivity of the specimen is measured in situ below ∼7.2 K during the irradiation. After the irradiation, annealing behavior of the resistivity is observed up to ∼30 K. The temperature dependence of the resistivity during annealing shows an abrupt increase around 20 K, implying re-crystallization of irradiation-induced amorphous regions. We have tried to detect a superconducting transition which may take place as a result of irradiation-induced amorphization. In the range of the measuring temperature down to ∼4.9 K, resistivity decrease due to superconducting transition has not been observed in the temperature dependence of the resistivity after 200-MeV 197Au ion irradiation up to a fluence of 3.1×1012 cm-2.