Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T07:32:29.225Z Has data issue: false hasContentIssue false

Effects of Growth Conditions and Substrate Orientation on the Properties of InSb

Published online by Cambridge University Press:  15 February 2011

R. M. Biefeld
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
K. C. Baucom
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Get access

Abstract

Two new organometallic Sb sources, tris(dimethylamino)antimony (TDMASb), and tertiarybutyldimethylantimony (TBDMSb) are being investigated. The growth of InSb using TDMASb, or TBDMSb and TMIn was investigated over a temperature range of 350 to 475 °C using a range of V/III ratios, growth rates and pressures. Misoriented InSb substrates were also used for selected growth conditions The growth rates of lnSb using TMIn and either TDMASb or TBDMSb at temperatures <= 425 °C were proportional to both the TMIn flow rate and the temperature. The surface morphology of InSb grown using either TDMASb or TBDMSb was very rough for growth temperatures <=425 °C. This may be due to the complex decomposition mechanisms involved and the presence of methyl groups on the surface. Smoother backgrounds were generally found when using off axis substrates. The details of the defects observed on the surfaces were dependent on the type of misorientation and can be related to the atomic structure of the surface steps. Both n- and p-type InSb were grown using TBDMSb or TDMASb and TMIn with mobilities up to 68,990 and 7773 cm2/Vs, respectively, at 77 K. The mobility for lnSb using either TDMASb or TBDMSb was optimized by going to lower temperatures, pressures and V/III ratios. The opposite was true for surface morphology which improved with higher temperature, pressure, and V/III ratio. The growth of high mobility InSb with smooth surfaces at T< =425 °C was not achieved with TDMASb or TBDMSb and TMIn under the conditions investigated in this work.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Biefeld, R. M., Cunningham, B. T., Kurtz, S. R., and Wendt, J. R., Mat. Res. Soc. Symp. Proc. 216, 175 (1991).Google Scholar
2. Gaskill, D. K., Stauf, G. T., and Bottka, N., Appl. Phys. Lett. 58, 1905 (1991).Google Scholar
3. Jindal, B. K., Sivaramakrishnan, V., Hall, J. T., and Bahraman, A., Proc. IRIS Spec. Group Infrared Materials, p. 271–285, 1989.Google Scholar
4. Stauf, G. T., Gaskill, D. K., and Bottka, N., and Gedridge, R. W. Jr, Appl. Phys. Lett. 58, 1311 (1991).Google Scholar
5. Chen, C. H., Fang, Z. M., Stringfellow, G. B., and Gedridge, R. W. Jr. Appl. Phys. Lett. 58, 2532 (1991).Google Scholar
6. Ma, K. Y., Fang, Z. M., Cohen, R. M., and Stringfellow, G. B., J. Electron. Mater. 21, 143 (1991).Google Scholar
7. Lum, R. M., Klingert, J. K., and Lamont, M. G., J. Cryst. Growth, 89, 137 (1988).Google Scholar
8. Biefeld, R. M., Kurtz, S. R., and Fritz, I. J., J. Electron. Mater. 18, 775 (1989).Google Scholar
9. Galuska, A. A., A.Gruelich, F., and Biefeld, R. M. (unpublished results).Google Scholar
10. Haacke, G., Watkins, S. P., and Burkhard, H., Appl. Phys. Lett. 56, 478 (1990).Google Scholar
11. Sugiura, O., Kameda, H., Shiina, K., and Matsumura, M., J. Electron. Mater. 17, 11 (1988).Google Scholar
12. Biefeld, R. M., Wendt, J. R., and Kurtz, S. R., J. Crystal Growth, 107, 836 (1991).Google Scholar
13. Biefeld, R. M. and Gedridge, R. W., J. Crystal Growth, 124, 150 (1992).Google Scholar
14. Gedridge, R. W. Jr. Organometallics, 11, 967 (1992).Google Scholar
15. Morton International, Advanced Materials, Danvers, MA.Google Scholar
16. Cao, D. S., Chen, C. H., Hill, C. W., Li, S. H., Stringfellow, G. B., Gordon, D. C., Brown, D. W., and Vaartstra, B. A., J. Electron. Mater. 21, 583 (1992).Google Scholar
17. Wiley, J. D. in Semiconductors and Semimetals, edited by Willardson, R. K. and Beer, A. C., (Academic Press, New York, NY, 1975), Vol.10, p. 166.Google Scholar
18. Strauss, A. J., J. Appl. Phys. 30 559 (1959).Google Scholar
19. Box, G. E. P., Hunter, W. G., and Hunter, J. S., ”Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building” (John Wiley & Sons, New York, NY, 1978).Google Scholar
20. van de Ven, J., Weyher, J. L., Ikink, H., and Giling, L. J., J. Electrochem. Soc., 134, 989 (1987).Google Scholar
21. Ohashi, T., Wicks, G. W., Sukherjee, S., and Eastman, L. F., J. Electron. Mater., 14, 419 (1985).Google Scholar