Article contents
Effects of Gallium Arsenide Passivation on Scanning Tunneling Microscope Excited Luminescence
Published online by Cambridge University Press: 15 February 2011
Abstract
An ambient scanning tunneling microscope (STM) was used to excite luminescence in ptype epitaxial GaAs with four separate surface preparations: bare GaAs, Au layer, sulfurmonochloride layer, and one monolayer of octa-decyl-thiol. The STM with tungsten tip was operated at a constant tunnel current of 5 nA during a +1 V bias applied to the sample and the resulting tip to sample distance was fixed during a higher voltage bias pulse which excited luminescence. The luminescence intensity increased rapidly with increasing bias voltage for all passivation types with the octa-decyl-thiol passivation achieving the highest STM excited luminescence (STMEL) of 3500 photons/sec at 4 V bias. Above about 4 V the luminescence from the octa-decyl-thiol and sulfur-monochloride passivated samples fell off irreversibly, indicating that the sample surface had been modified. The Au passivated and unpassivated samples showed no such luminescence drop up to 4.8 V, the highest bias employed. Photoluminescence (PL) studies of the samples showed that PL intensities exhibited a weaker dependence upon passivation type than did STMEL intensities, a result consistent with the assertion that STMEL is more sensitive to the surface properties of the sample than is PL.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1995
References
REFERENCES
- 1
- Cited by