No CrossRef data available.
Published online by Cambridge University Press: 03 January 2013
GaZnO and GaZnON thin films were deposited on both Si (100) and c-axis oriented sapphire substratesby RF co-sputtering of ZnO target and Ga2O3tablets in Ar/O2 and Ar/N2, respectively, by changing the number of Ga2O3tablets (NGa2O3) placed on the ZnO target in the range of 0 to 16.They were subsequently annealed in N2 at 800 °C and then, some of the samples formed by Ar/O2-sputtering were subjected to NH3 treatment at 650 °C for nitridation. XRD measurements revealed that the c-axis lattice parameter calculated from the ZnO (002) peak for GaZnON film son Si (100) was remarkably larger than for GaZnO films on Si (100). Moreover, ZnO (002) was observed up to NGa2O3=16 for GaZnON films formed on sapphire, while no XRD peaks were observed above NGa2O3=8 for GaZnON films on Si(100). Optical band-gap ofGaZnO and GaZnON films became wider from 3.34to 3.67 eVand from 3.21to 3.40 eV, respectively, with increasing NGa2O3 from 0 to 16. Photoluminescence spectra of GaZnO films showed band-to-band emission at 380nm, while those of GaZnON films exhibited broad and weak peaks centered at 550 nm and 647nm.