Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-20T00:27:46.006Z Has data issue: false hasContentIssue false

Effects of Fiber Orientation and Overlapping on Knudsen, Transition, and Ordinary Regime Diffusion in Fibrous Substrates

Published online by Cambridge University Press:  15 February 2011

Manolis M. Tomadakis
Affiliation:
Department of Chemical Engineering University of Rochester Rochester, NY 14627
Stratis V. Sotirchos
Affiliation:
Department of Chemical Engineering University of Rochester Rochester, NY 14627
Get access

Abstract

We prescnt effective diffusion coefficients of gases in porous media whose structure can be represented as an assemblage of cylindrical fibers, such as the media used as substrates in chemical vapor infiltration. Structures consisting of non-, partially, or freely overlapping fibers of various orientation distributions are considered, and effective diffusion coefficients are computed by means of a Monte Carlo simulation scheme. In order to be able to examine the interrelation of ordinary, transition, and Knudsen diffusivities and tortuosities, computations are carried out over the whole diffusion regime, i.e., from bulk to Knudsen. Our simulation results are compared with variational bounds and experimcntal values of tortuosity of fibrous beds reported by other investigators.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Stinton, D.P., Besmann, T.M., and Lowden, R.A., Am. Ceram. Soc. Bull. 67, 350 (1988).Google Scholar
2. Stinton, D.P., Caputo, A.J., and Lowden, R.A., Am. Ceram. Soc. Bull. 65, 347 (1986).Google Scholar
3. Sugiyama, K. and Nakamura, T., J. Mat. Sci. Let. 6, 331 (1987).CrossRefGoogle Scholar
4. Sugiyama, K. and Ohsawa, Y., J. Mat. Sci. Let. 7, 1221 (1988).CrossRefGoogle Scholar
5. Brown, J.C, TAPPI 33, 130 (1950).Google Scholar
6. Bateman, B.R., Way, J.D and Larson, K.M., Sep. Sci. Tech. 19, 21 (1984).Google Scholar
7. Penman, H.L., J. Agri. Sci. 30, 437 (1940).Google Scholar
8. Milton, G.W., J. Appl. Phys. 52, 5294 (1981).Google Scholar
9. Tsai, D.S. and Strieder, W., Chem. Eng. Comm. 40, 207 (1986).Google Scholar
10. Faley, T.L. and Strieder, W., J. Appl. Phys. 62, 4394 (1987).CrossRefGoogle Scholar
11. Faley, T.L. and Strieder, W., J. Chem. Phys. 89, 6936 (1988).Google Scholar
12. Rahman, A., Phys. Rev. 136, A405 (1964).CrossRefGoogle Scholar
13. Caputo, A.J, Lackey, W.J. and Stinton, D.P., Ceram. Eng. Sci. Proc. 6, 694 (1985).Google Scholar
14. Naslain, R., Langlais, F. and Fedou, R., J. de Physique 50, C5191 (1989).Google Scholar
15. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller, E., J. Chem. Phys. 21, 1087 (1953).Google Scholar
16. Meyers, M.A. and Chawla, K.K., Mechanical Metallurgy Principles and Applications (Prentice Hall, New Jersey, 1984)Google Scholar
17. Hopkins, G.R. and J. Chin, J. Nucl. Mat. 143, 148 (1986).CrossRefGoogle Scholar
18. Coleman, R., J. Appl. Prob. 6, 430 (1969).Google Scholar
19. Burganos, V.N. and Sotirchos, S.V., Chem. Eng. Sci. 44, 2451 (1989).Google Scholar
20. Tomadakis, M.M. and Sotirchos, S.V., AIChE J. 37, 74 (1991).CrossRefGoogle Scholar
21. Tomadakis, M.M. and Sotirchos, S.V., AIChE J. 37, 1175 (1991).Google Scholar
22. Tomadakis, M.M. and Sotirchos, S.V., (in preparation) (1991).Google Scholar
23. Pollard, W.G. and Present, R.D., Phys. Rev. 73, 762 (1948).Google Scholar