Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T17:31:58.279Z Has data issue: false hasContentIssue false

Effects of Excimer Laser Ablation on the Surface of Hexagonal Boron Nitride

Published online by Cambridge University Press:  26 February 2011

G. L. Doll
Affiliation:
General Motors Research Laboratories, 30500 Mound Road, Warren, MI 48090
T. A. Perry
Affiliation:
General Motors Research Laboratories, 30500 Mound Road, Warren, MI 48090
J. A. Sell
Affiliation:
General Motors Research Laboratories, 30500 Mound Road, Warren, MI 48090
Get access

Abstract

The laser-induced changes in the hexagonal boron nitride targets that are used in the deposition of pulsed laser-deposited cubic boron nitride films are examined. Although the structure of the hexagonal boron nitride in the irradiated areas is unaltered, the surface morphology changes considerably. Boron-rich spheroids were found to cover the irradiated area. Their origin is consistent with the hydrodynamic sputtering of the hexagonal boron nitride targets, and a liberation of nitrogen atoms to the gas phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[l] Cheung, J. T. and Sankur, H., CRC Critical Reviews in Solid State and Materials Sciences 15, 63 (1988).Google Scholar
[2] Wu, X. D., in Laser Ablation for Materials Synthesis, edited by Paine, D. C. and Bravman, J. C. (Materials Research Society Proceedings Volume 191, Pittsburgh, PA, 1990) pp. 129140.Google Scholar
[3] Cheung, J. T., Niizawa, G., Moyle, J., Ong, N. P., Paine, B. M., and Vreeland, T., J. Vac. Sci. Tech. A4, 2086 (1986).Google Scholar
[4] Sankur, H., Gunning, W. J., DeNatale, J., and FlintofF, J. F., J. Appl. Phys. 65, 2475 (1989).Google Scholar
[5] Rebouillat, J. P., Michelutti, B., Souche, Y., Gavigan, J. P., Giard, D., and Lienard, A., in Reference 2, p. 259.Google Scholar
[6] Lynds, L., Weinberger, B. R., Peterson, G. G., and Krasinski, H. A., Appl. Phys. Lett. 52, 320 (1988).Google Scholar
[7] Hansen, S. G. and Rabitaille, T. E., Appl. Phys. Lett. 52, 81 (1988).Google Scholar
[8] Doll, G. L., Sell, J. A., Salamanca-Riba, L., and Ballal, A. K., in Reference 2, pp. 55–60;Google Scholar
Doll, G. L., Sell, J. A., Taylor II, C. A., and Clarke, R., Proc. of Symp. C, this meeting.Google Scholar
[9] HBR, HBN, HBC, and pBN targets can be obtained commercially from Union Carbide Coatings Service Corporation, 11907 Madiaon Avenue, Cleveland, OH 44107.Google Scholar
[10] Speck, J. S., Steinbeck, J., and Dresselhaus, M. S., J. Mat. Res. 5, 980 (1990).Google Scholar
[11] Gaponov, S. V., Gudkov, A. A., and Fraerman, A. A., Sov. Tech. Phys. 27, 1130 (1982).Google Scholar
[12] Thomas, S. J., Harrison, R. F., and Figueira, J. F., Appl. Phys. Lett. 40, 200 (1982).Google Scholar
[13] Rothenberg, J. E. and Kelly, R., Nucl. Instr. and Meth. B1, 291 (1984).Google Scholar
[14] Kelly, R. and Rothenberg, J. E., Nucl. Instr. Meth. Phys. B7/8, 755 (1985).Google Scholar
[15] Nemanich, R. J., Solin, S. A., and Martin, R. M., Phys. Rev. B 23 (1984).Google Scholar
[16] Pease, R. S., Acta. Crystallogr. 5, 356 (1952).Google Scholar
[17] Hoffman, D. M., Doll, G. L., and Eklund, P. C., Phys. Rev. B 30, 6051 (1984).Google Scholar