Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T02:35:46.172Z Has data issue: false hasContentIssue false

Effects of Exchange Interaction in Diluted Magnetic Semiconductor Quantum Wells

Published online by Cambridge University Press:  26 February 2011

Jacek Kossut
Affiliation:
Department of Physics, Purdue University, West Lafayette, IN 47907, U.S.A.
Jacek K. Furdyna
Affiliation:
Department of Physics, Purdue University, West Lafayette, IN 47907, U.S.A.
Get access

Abstract

The presence of transition metal ions (typically Mn2+) in diluted magnetic semiconductors (DMS) results in a strong spin-spin coupling between localized magnetic moments and band electrons. This leads to considerable modifications of the semiconductor band structure in the presence of strong magnetic fields, e.g., to large spin-dependent shifts of the electronic states at the band edge. This feature is of particular interest in the context of quantum wells involving DMS. Starting with the original idea of a “spin-superlattice”, we concentrate on various opportunities which arise due to the tunability of the depth of the quantum wells by the magnetic field and/or temperature associated with the aforementioned spindependent effects. Thus, we discuss boil-off and freeze-out of electrons to and from quantum wells, selective spin tunneling across the barriers, tunable infrared emitters, enhancement of electronic g-factors in shallow non-magnetic wells surrounded by DMS barriers, the possibility of transition from a type-1 to a type-il superlattice induced by the magnetic field, and quantum oscillations anomalies in DMS quantum wells.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] For the recent reviews of DMS see: Furdyna, J.K., J.Vac.Sci.Technol. 4, 2002 (1986); J.K.Furdyna, J.Appl.Phys. 53, 7637 (1984); J.Mycielski, Progr. Cryst. Growth Character. 10, 101 (1985); N.B.Brandt and V.V. Moshchalkov, Adv. Phys. 33, 193 (1984).Google Scholar
[2] Bicknell, R.N., Yanka, R.W., Giles-Taylor, N.C., Blanks, D.K., Buckland, E.L., and Schetzina, J.F., Appl.Phys.Lett. 45, 92 (1984).Google Scholar
[3] Kolodziejski, L.A., Sakamoto, T., Gunshor, R.L., and Datta, S., Appl.Phys.Lett. 44,799 (1984).Google Scholar
[4] Kolodziejski, L.A., Gunshor, R.L., Bonsett, T.C., Venkatasubramanian, R., Datta, S., Bylsma, R.B., Becker, W.M., and Otsuka, N., Appl.Phys.Lett. 42, 169 (1985).Google Scholar
[5] Dobrowolska, M., Yang, Z., Luo, H., Furdyna, J.K., Harris, K.A., Cook, J.W. Jr., and Schetzina, J.F., J.Vac.Sci.Technol., to be published; see also this conference.Google Scholar
[6] Furdyna, J.K., Kossut, J., and Ramdas, A.K., Proc. Advanced Workshop on Optical Properties of Narrow-Gap Low Dimensional Structures, St.Andrews, Scotland, 1986 (in press).Google Scholar
[7] Venugopalan, S., Kolodziejski, L.A., Gunshor, R.L., and Ramdas, A.K., Appl.Phys.Lett. 45 , 974 (1984).CrossRefGoogle Scholar
[8] Kolodziejski, L.A., Gunshor, R.L., Otsuka, N., Gu, B.P., Hefetz, Y., and Nurmikko, A.V., Appl.Phys.Lett. 48, 1482 (1986).CrossRefGoogle Scholar
[9] Jaczynski, M., Kossut, J., and Galazka, R.R., Phys.Status Solidi (b) 88 , 73 (1978).Google Scholar
[10] Bastard, G., Rigaux, C., Guldner, Y., Mycielski, J., and Mycielski, A., J.Phys. (Paris) 32 , 87 (1978).CrossRefGoogle Scholar
[11] Datta, S., Furdyna, J.K., and Gunshor, R.L., Superlatt. Microstruct. 1, 327 (1985).Google Scholar
[12] Ortenberg, M. von, Phys.Rev.Lett. 49, 1041 (1982).Google Scholar
[13] Pötz, W. and Ferry, D.K., Phys.Rev. B 32, 3863 (1985).Google Scholar
[14] See, e.g., Blanks, D.K., Bicknell, R.N., Giles-Taylor, N.C., and Schetzina, J.F., J.Vac.Sci.Technol. A 4, 2120 (1986).Google Scholar
[15] Brum, J.A., Bastard, G., and Voos, M., Solid State Commun. 59, 561 (1986).Google Scholar
[16] Capasso, F., Mohammed, K., and Cho, A.Y., Appl. Phys. Lett. 48, 478 (1986).Google Scholar
[17] Kazarinov, R.F. and Suris, R.A., Sov.Phys. Semicond. 5, 707 (1971) [Fiz.Tekh.Poluprov. 5, 797 (1971)].Google Scholar
[18] Zhang, X.-C., Chang, S.-K., Nurmikko, A.V., Kolodziejski, L.A., Gunshor, R.L., and Datta, S., Phys.Rev. B 31, 4056 (1985).Google Scholar
[19] Silva, C.E.T. Goncalves da, Phys.Rev.B 32, 6962 (1985).Google Scholar
[20] Wu, J.-W., Nurmikko, A.V., and Quinn, J.J., Solid State Commun. 57, 853 (1986).Google Scholar
[21] Silva, C.E.T. Goncalves da, Phys.Rev. B 33,2923 (1986).Google Scholar
[22] Vittoria, C., RAchford, F.J., Krebs, J.J., and Prinz, G.A., Phys.Rev. B 30, 3039 (1984).Google Scholar
[23] Bylsma, R.B., Becker, W.M., Bonsett, T.C., Kolodziejski, L.A., Gunshor, R.L., Yamanishi, M., and Datta, S., Appl. Phys. Lett. 47, 1039 (1985).Google Scholar
[24] Bicknell, R.N., Giles-Taylor, N.C., Schetzina, J.F., Anderson, N.G., and Laidig, W.D., J.Vac.Sci.Technol. A 4, 2126 (1986).Google Scholar
[25] Isaaks, E.D., Heiman, D., Zayhowski, J.J., Bicknell, R.N., and Schetzina, J.F., Appl.Phys.Lett. 48, 275 (1986).CrossRefGoogle Scholar