Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T20:31:26.620Z Has data issue: false hasContentIssue false

Effects of Elevated Temperature Hydrogen Exposure on the Microstructure of α 2- and γ-Based Titanium Aluminide Alloys

Published online by Cambridge University Press:  01 January 1992

D. S. Schwartz
Affiliation:
McDonnell Douglas Aerospace, PO Box 516, m/c 111-1041, St. Louis, MO 63166-0516
R. J. Lederich
Affiliation:
McDonnell Douglas Aerospace, PO Box 516, m/c 111-1041, St. Louis, MO 63166-0516
W. B. Yelon
Affiliation:
University of Missouri-Columbia, Research Reactor Facility, Columbia, MO 65211
Y.-Y. Tang
Affiliation:
University of Missouri-Columbia, Research Reactor Facility, Columbia, MO 65211
S. M. L. Sastry
Affiliation:
Washington University, St. Louis, MO 63130
Get access

Abstract

Ti-25Al, Ti-25Al-10Nb-2V, and Ti-25Al-10Nb-3V-1Mo (at. %) α2-based alloys, and Ti-48Al and Ti-52Al γ-based alloys were exposed to gaseous hydrogen at elevated temperatures. A novel ternary hydride was observed in Ti-25Al and Ti-25Al-10Nb-3V-1Mo, identified as Ti3AlH. A highly faulted ternary hydride was seen in two phase α2 + γ Ti-48Al which did not have the crystal structure or chemistry of any known Ti- or Ti-Al-hydride. Very fine, oriented, needle-shaped hydrides were observed in single-phase γ Ti-52Al.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sidhu, S. S., Heaton, L., and Zaubensi, D. D., Acta Crystall. 9 (56) 607.Google Scholar
2. Yakel, H. L. Jr., Acta Crystall. 11 (58) 46.Google Scholar
3. Paton, N. E., Hickman, B. S., and Leslie, D. H., Metall. Trans. 2 (71) 2791.Google Scholar
4. Woo, O. T., Weatherly, G. C., Coleman, C. E., and Gilbert, R. W., Acta Metall. 33 (85) 1897.Google Scholar
5. Shih, D. S., and Birnbaum, H. K., Scripta Metall. 20 (86) 1261.Google Scholar
6. McQuillan, A. D., Proc. Roy. Soc. London A204 (50) 309.Google Scholar
7. Lenning, G. A., Craighead, C. M., and Jaffee, R. I., Trans. AIME 200 (54) 367.Google Scholar
8. Chu, W.-Y. and Thompson, A. W., Metall. Trans. A 23A (92) 1299.Google Scholar
9. Sastry, S. M. L., Soboyejo, W. O., and Lederich, R. J., Summary Proc. 3d Workshop on Hydrogen-Materials Interaction, NASP Joint Prog. Office Workshop Pub. 1007, (Nelson, H. G., ed., Moffet Field, CA, 1990) 191.Google Scholar
10. Chu, W.-Y. and Thompson, A. W., Scripta Metall. Mater 25. (91) 2133.Google Scholar
11. Manor, E. and Eliezer, D., Scripta Metall. 23 (89) 1313.Google Scholar
12. Shih, D. S., Scarr, G. K., and Wasielewski, G. E., Scripta Metall. 23 (89) 973.Google Scholar
13. Chu, W.-Y., Thompson, A. W., and Williams, J. C., Acta Metall. 40 (92) 455.Google Scholar
14. Legzdina, D., Robertson, I. M., and Birnbaum, H. K., J. Mater. Res. 6 (91) 1230.Google Scholar
15. Matejczyk, D. E. and Rhodes, C. G., Scripta Metall. Mater. 24 (90) 1369.Google Scholar
16. Schwartz, D. S., Yelon, W. B., Berliner, R. R., Lederich, R. J., and Sastry, S. M. L., Acta Metall. Mater. 39 (91) 2799.Google Scholar
17. Legzdina, D., Robertson, I. M., and Birnbaum, H. K., Scripta Metall. Mater. 26 (92) 1737.Google Scholar