Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T23:21:56.694Z Has data issue: false hasContentIssue false

Effects of Electrically Active Impurities on the Epitaxial Regrowth Rate of Amorphized Silicon and Germanium

Published online by Cambridge University Press:  15 February 2011

I. Suni
Affiliation:
California Institute of Technology, Pasadena, CA 91125 (U.S.A.)
G. Göltz
Affiliation:
California Institute of Technology, Pasadena, CA 91125 (U.S.A.)
M.-A. Nicolet
Affiliation:
California Institute of Technology, Pasadena, CA 91125 (U.S.A.)
S. S. Lau
Affiliation:
University of California, San Diego, La Jolla, CA 92093 (U.S.A.)
Get access

Extract

The influence of electrically active n-type (75As) and p-type (11B) impurities on the solid phase epitaxial regrowth of ion-implanted amorphized Si<100> and Ge<100> has been studied for low temperature furnace annealing. Both types of impurity increase the rate of regrowth of both silicon and germanium at a concentration level of 1020 cm−3 . Above this level, 75As retards regrowth in germanium. In compensated surface layers, the regrowth rate slows down to the values observed in self-implanted or intrinsic crystals for both silicon and germanium. The results can be qualitatively explained in terms of electrically induced generation of point defects at the amorphous-crystalline interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Csepregi, L., Mayer, J. W. and Sigmon, T. W., Phys. Lett. A, 54 (1975) 157.Google Scholar
2 Csepregi, L., Kfillen, R. P., Mayer, J. W. and Sigmon, T. W., Solid State Commun., 21 (1977) 1019.Google Scholar
3 Csepregi, L., Kennedy, E. F., Mayer, J. W. and Sigmon, T. W., J. Appl. Phys., 49 (1978) 3906.CrossRefGoogle Scholar
4 Csepregi, L., Kennedy, E. F., Gallagher, T. J., Mayer, J. W. and Sigmon, T. W., J. Appl. Phys., 48 (1977) 4234.Google Scholar
5 Nishi, H., Sakurai, T. and Furuya, T., J. Electrochem. Soc., 125 (1978) 461.Google Scholar
6 Suni, I., Göltz, G., Nicolet, M.-A., Grimaldi, M. G. and Lau, S. S., Appl. Phys. Lett., 40 (1982) 269.Google Scholar
7 Spaepen, F., Acta Metall., 26 (1978) 1167.CrossRefGoogle Scholar
8 Van Vechten, J. A. and Thurmond, L. D., Phys. Rev. B, 14 (1976) 3539.CrossRefGoogle Scholar
9 Shaw, D., Phys. Status Solidi B, 72 (1975) 11.Google Scholar
10 Smith, B., Ion Implantation Range Data for Silicon and Germanium Device Technologies, Research Studies, Forest Grove, OR, 1977.Google Scholar
11. Hofker, W. K., Oosthoek, D. P., Koeman, N. J. and De Grefte, H. A. M., Radiat. Eff., 24 (1975) 223.CrossRefGoogle Scholar
12 Williams, J. S., Christodoulides, C. E. and Grant, W. A., Radiat. Eff, 48 (1980) 157.CrossRefGoogle Scholar
13 Campisano, S. U., Rimini, E., Baeri, P. and Foti, G., Appl. Phys. Lett., 37 (1980) 170.Google Scholar
14 Trumbore, F. A., Bell Syst. Tech. J., 39 (1960) 205.Google Scholar
15 Campisano, S. U. and Barbarino, A. E., Appl. Phys., 25 (1981) 153.Google Scholar
16 Lietoila, A., Wakita, A., Sigmon, T. W. and Gibbons, J. F., to be published.Google Scholar
17 Kokorowski, S. A., Olson, G. L. and Hess, L. D., J. Appl. Phys., 53 (1982) 921.Google Scholar