Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T02:33:17.140Z Has data issue: false hasContentIssue false

Effects of Deviation from Stoichiometry on Deformation Behavior of Hard-Oriented NiAl Single Crystals

Published online by Cambridge University Press:  10 February 2011

R. Srinivasan
Affiliation:
Dept. of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210
M. F. Savage
Affiliation:
Dept. of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210
R. D. Noebe
Affiliation:
NASA Lewis Research Center, Cleveland, OH 44135
M. J. Mills
Affiliation:
Dept. of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210
Get access

Abstract

Ni-44A1, Ni-50Al and NiAl-0.3 at.% Hf single crystals have been studied in compression to understand the effects that alloying additions and deviation from stoichiometry can have on the mechanical response of NiAl-based single crystals. While all three single crystals deform through a<111> slip at lower temperatures, the active slip systems differ at higher temperatures. Climb of a<010> dislocations contributes to deformation in Ni-50AI single crystals beyond the slip transition temperature, while Ni-44Al and NiAl-0.3Hf crystals deform through a<101> glide. But several microstructural differences have been observed in the mode of deformation between Ni-44Al and NiAl-0.3Hf crystals. In addition, significant strengthening is exhibited in the Hf-doped crystals at higher temperatures. The post-deformation microstructure is also observed to be sensitive to both strain and strain rate. A possible explanation is offered for some of the observed differences in deformation behavior between the three alloys.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ball, A. and Smallman, R. E., Acta metall. 14, 1517 (1966).CrossRefGoogle Scholar
2. Loretto, M. H. and Wasilewski, R. J., Phil. Mag. 23, 1311 (1971).CrossRefGoogle Scholar
3. Kim, J. T. and Gibala, R., Mat. Res. Soc. Symp. Proc. 213, 261 (1991).Google Scholar
4. Pascoe, R. T. and Newey, C. W. A., Metal. Sci. J. 2, 138 (1968).CrossRefGoogle Scholar
5. Pascoe, R. T. and Newey, C. W. A., Metal Sci. J. 5, 50 (1971).CrossRefGoogle Scholar
6. Field, R. D., Lahrman, D. F., and Darolia, R., Acta metall. mater. 39, 2951 (1991).Google Scholar
7. Fraser, H. L., Smallman, R. E., and Loretto, M. H., Phil. Mag. 28, 651 (1973).Google Scholar
8. Srinivasan, R., Savage, M. F., Daw, M. S., Noebe, R. D., and Mills, M. J., Scripta Mat. 39, 457 (1998).CrossRefGoogle Scholar
9. Srinivasan, R., Savage, M. F., Daw, M. S., Noebe, R. D., Garg, A., and Mills, M. J., Structural Intennetallics II, 662 (1997).Google Scholar
10. Noebe, R. D., Bowman, R. R., and Nathal, M. V., International Materials Review 38, 193 (1993).Google Scholar
11. Y Sun, Q., Taylor, G., Darolia, R., and Hazzledine, P. M., Mat. Res. Soc. Symp. Proc. 364, 261 (1995).CrossRefGoogle Scholar
12. Fraser, H. L., Loretto, M. H., and Smallman, R. E., Phil. Mag. 28, 667 (1973).Google Scholar
13. Sun, Y. Q., Taylor, G., Darolia, R., and Hazzledine, P. M., Phil. Mag. A 58, 603 (1988).CrossRefGoogle Scholar
14. Brown, J. S., Srinivasan, R., Mills, M. J., and Daw, M. S., in preparation.Google Scholar
15. Forbes, K. R., Glatzel, U., Darolia, R., and Nix, W. D., Mat. Res. Soc. Symp. Proc. 288, 45 (1993).Google Scholar
16. Kim, J. T., Ph.D. Thesis, University of Michigan (1990).Google Scholar
17. Mills, M. J., Srinivasan, R., and Daw, M. S., Phil. Mag. A 77, 801 (1998).Google Scholar
18. Mills, M. J. and Miracle, D. B., Acta metall. mater. 41, 85 (1993).CrossRefGoogle Scholar
19. Lasalmonie, A., J. Mater. Sci. 17, 2419 (1982).CrossRefGoogle Scholar
20. Garg, A. and Noebe, R. D., Scripta Mat. 39, 437 (1998).Google Scholar
21. Garg, A., Noebe, R. D., and Darolia, R., Acta Mater. 44, 2809 (1996).Google Scholar
22. Savage, M. F., Srinivasan, R., Lograsso, T. A., Garg, A., Noebe, R. D., and Mills, M. J., Mater. Sci. and Eng. A (1998).Google Scholar
23. Parthasarathi, A. and Fraser, H. L., Phil. Mag. A 50, 89 (1984).Google Scholar
24. Collins, G. J., Fan, J., and Bai, B., Structural Intermetallics II, 43 (1997).Google Scholar
25. Bai, B., Ph.D. Thesis, Washington State University (1997).Google Scholar
26. Fan, J., Ph.D. Thesis, Washington State University (1992).Google Scholar
27. Kitabjian, P. H. and Nix, W. D., Acta Mat. 46, 701 (1998).CrossRefGoogle Scholar
28. Jayaram, R. and Miller, M. K., Scripta Metall. Mater. 33, 19 (1995).Google Scholar