Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T15:14:25.375Z Has data issue: false hasContentIssue false

The Effects of Crystallinity and Catalyst Dynamics on Boron Carbide Nanospring Formation

Published online by Cambridge University Press:  11 February 2011

D. N. McIlroy
Affiliation:
Department of Physics, Engineering and Physics Bldg., University of Idaho, Moscow, ID, 83844–0903, U.S.A.
D. Zhang
Affiliation:
Department of Physics, Engineering and Physics Bldg., University of Idaho, Moscow, ID, 83844–0903, U.S.A.
Y. Kranov
Affiliation:
Department of Physics, Engineering and Physics Bldg., University of Idaho, Moscow, ID, 83844–0903, U.S.A.
H. Han
Affiliation:
Department of Physics, Engineering and Physics Bldg., University of Idaho, Moscow, ID, 83844–0903, U.S.A.
A. Alkhateeb
Affiliation:
Department of Physics, Engineering and Physics Bldg., University of Idaho, Moscow, ID, 83844–0903, U.S.A.
M. Grant Norton
Affiliation:
School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164–2920, U.S.A.
Get access

Abstract

The formation of helical nanowires—nanosprings—of boron carbide have been observed and a growth mechanism, based on the work of adhesion of the metal catalyst and the tip of the nanowire, developed. The model demonstrates that the asymmetry necessary for helical growth is introduced when the following conditions are met:

(1) The radius of the droplet is larger than the radius of the nanowire, and

(2) The center of mass of the metal droplet is displaced laterally from the central axis of the nanowire.

Furthermore, this model indicates that only amorphous nanowires will exhibit this unique form of growth and that in monocrystalline nanowires it is the crystal structure that inhibits helical growth. High-resolution transmission electron microscopy and electron diffraction has been used to compare the structure of both amorphous and crystalline nanowires.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Alivisatos, A. P., Science 271, 933 (1996).Google Scholar
2. Hasen, J., Pfeiffer, L. N., Pinczuk, A., He, Song, West, K. W., Dennis, B. S., Nature 390, 54 (1997).Google Scholar
3. Duan, X., Huang, Y., Cui, Y., Wang, J., and Lieber, C. M., Nature 409, 66 (2001).Google Scholar
4. Bonard, J.-M., Stöckli, T., Maier, F., de Heer, W. A., Châtelain, A., Salvetat, J.-P., and Forró, L., Phys. Rev. Lett. 81, 1441 (1998).Google Scholar
5. Klein, D. L., Roth, R., Lim, A. K. L., Alivisatos, A. P., McEuen, P. L., Nature 389, 699 (1997).Google Scholar
6. Collins, P. G., Zettl, A., Bando, H., Thess, A., and Smalley, R. E., Science 278, 100 (1997).Google Scholar
7. Hu, J., Ouyang, M., Yang, P., and Lieber, C. M., Nature 399, 48 (1999).Google Scholar
8. Bonard, J.-M., Salvetat, J. P., Stöckli, T., de Heer, W. A., Forró, L., and Châtelain, A., Appl. Phys. Lett. 73, 918 (1998).Google Scholar
9. Wang, Q. H., Corrigan, T. D., Dai, J. Y., Chang, R. P. H. and Krauss, A. R., Appl. Phys. Lett. 70, 3308 (1997).Google Scholar
10. Au, F. C. K., Wong, K. W., Tang, Y. H., Zhang, Y. F., Bello, I., and Lee, S. T., Appl. Phys. Lett. 75, 1700 (1999).Google Scholar
11. Wong, K. W., Zhou, X. T., Au, F. C. K., Lai, H. L., Lee, C. S., and Lee, S. T., Appl. Phys. Lett. 75, 2918 (1999).Google Scholar
12. Mao, J. M., Sun, L. F., Qian, L. X., Pan, Z. W., Chang, B. H., Zhou, W. Y., Wang, G., and Xie, S. S., Appl. Phys. Lett. 72, 3297 (1998).Google Scholar
13. Huang, Z. P., Xu, J. W., Ren, Z. F., Wang, J. H., Siegal, M. P., and Provencio, P. N., Appl. Phys. Lett. 73, 3845 (1998).Google Scholar
14. Zhang, D., McIlroy, D. N., Geng, Y., and Norton, M. G., J. Material Sci. Lett. 18, 349 (1999).Google Scholar
15. McIlroy, D. N., Zhang, D., Cohen, R. M., Wharton, J., Geng, Y., Grant Norton, M., De Stasió, G., Gilbert, B., Perfetti, L., Streiff, J. H., Broocks, B., and McHale, J. L., Phys. Rev. B 60, 4874 (1999).Google Scholar
16. Zhou, D. and Seraphin, S., Chem. Phys. Lett. 222, 232 (1994).Google Scholar
17. Morales, A. M. and Lieber, C. M., Science 279, 208 (1998).Google Scholar
18. Wagner, R.S. and Ellis, W.C., Appl. Phys. Lett. 4, 89 (1964).Google Scholar
19. Tang, Y. H., Zhang, Y. F., Wang, N., Lee, C. S., Han, X. D., Bello, I., and Lee, S. T., J. Appl. Phys. 85, 7981 (1999).Google Scholar
20. Peng, H. Y., Wang, N., Shi, W. S., Zhang, Y. F., Lee, C. S., and Lee, S. T., J. Appl. Phys. 89, 727 (2001).Google Scholar
21. Motojima, S, Ueno, S., Hattori, T., and Goto, K., Appl. Phys. Lett. 54, 1001 (1989).Google Scholar
22. Motojima, S., Itoh, Y., Asakura, S. and Iwanaga, H., J. Mater. Sci. 30, 5049 (1995).Google Scholar
23. McIlroy, D. N., Zhang, D., Kranov, Y., and Grant Norton, M., Appl. Phys. Lett. 79, 1540 (2001).Google Scholar
24. Amelinckx, S., Zhang, X. B., Bernaerts, D., Zhang, X. F., Ivanov, V., and Nagy, J. B., Science 265, 635 (1994).Google Scholar
25. Irons, S. H., Nemchuk, N. I., Rohrs, H. W., Kowalewski, T., Faircloth, B. O., Krchnavek, R. R., and Ruoff, R. S., Electrochem. Soc. Proc. Vol. 97–14, 875 (1997).Google Scholar
26. Zhang, H.-F., Wang, C-M., and Wang, L.S., Nano Lett. 2, 941 (2002).Google Scholar
27. Wagner, R. S., Whisker Technology (Wiley Interscience, New York, 1970), p. 257; p. 109.Google Scholar