Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T23:32:38.048Z Has data issue: false hasContentIssue false

Effects of Coulomb Impurity in Semiconductor Nanowire

Published online by Cambridge University Press:  17 February 2014

Tamar Tchelidze
Affiliation:
Ivane Javakhishvili Tbilisi State University, Faculty of Exact and Natural Science, 0179 3 Chavchavadze Ave. Tbilisi,
Tamaz Kereselidze
Affiliation:
Ivane Javakhishvili Tbilisi State University, Faculty of Exact and Natural Science, 0179 3 Chavchavadze Ave. Tbilisi,
Teimuraz Nadareishvili
Affiliation:
Ivane Javakhishvili Tbilisi State University, Faculty of Exact and Natural Science, 0179 3 Chavchavadze Ave. Tbilisi,
Get access

Abstract

We present calculation of electronic structure of impurity in nanowire. Ionization energy of impurities are calculated in dependence on nanowire radius. Direct Hamiltonian matrix diagonalization method with the physically reasonable approximate potential is employed for finding the exact solution of Schrödinger equation in the effective-mass approximation. It is shown that shallow donors are strongly influences by space confinement, which is expressed in sharp increase of ionization energy. Calculations show that effect of space confinement on deep impurities is less pronounced. The obtained results give hope that by selecting optimal value of nanowire radius compensation processes can be suppressed.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bastard, G., Phys. Rev. B 24, 4714 (1981)CrossRefGoogle Scholar
Mendoza, C. I., Vazquez, G. J., Mussot, M. D. C. and Spector, H., Phys. Rev. B 71, 075330 (2005)CrossRefGoogle Scholar
Movilla, J. L., Planelles, J., Phys. Rev. B 71, 075319 (2005)CrossRefGoogle Scholar
Baskoutas, S. and Terzis, A. F., Physica E 40, 1367 (2008)CrossRefGoogle Scholar
Qi, X. H., Kong, X. J. and Liu, J. J., Phys. Rev. B 58, 10578 (1998)CrossRefGoogle Scholar
Lee, J. and Spector, H. N., J. Vac. Sci. Technol. B 2, 16 (1984)CrossRefGoogle Scholar
Bryant, G. W., Phys. Rev. B 31, 7812 (1985)CrossRefGoogle Scholar
Brown, J. W. and Spector, H. N., J. Appl. Phys., 59, 1179 (1986)CrossRefGoogle Scholar
Kasapoglu, E., Sari, H. and Sökmen, I., Physica B 392, 213 (2007)CrossRefGoogle Scholar
Diarra, M., Niquet, Y., Delerue, C., Allan, G., Phys. Rev. B, 75, 045301, 2007 CrossRefGoogle Scholar
Wang, H., Jiang, L., Gong, Q. and Feng, S., Physica B 405, 3818 (2010)CrossRefGoogle Scholar
Quang, N. H., Truc, N. T., Niquet, Y.-M., Computational Materials Science 44, 21 (2008)CrossRefGoogle Scholar
Dayeh, Sh. A., Yu, E. T., and Wang, D., small, 5, 77 (2009)CrossRefGoogle Scholar
Shabaev, A. and Efros, Al. L., Nano Lett., 4, 1821, (2004)CrossRefGoogle Scholar
Giblin, Jay, Vietmeyer, Felix, McDonald, Matthew P., and Kuno, Masaru Nano Lett., 11, 33073311 (2011).CrossRefGoogle Scholar