Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T15:38:33.022Z Has data issue: false hasContentIssue false

Effects of Band Offsets on a-Sic:H/c-Si Heterojunction Solar Cell Performance

Published online by Cambridge University Press:  10 February 2011

M. W. M. Van Cleef
Affiliation:
Debye Institute, Utrecht University, PO Box 80000, 3508 TA, Utrecht, The Netherlands
F. A. Rubinelli
Affiliation:
Debye Institute, Utrecht University, PO Box 80000, 3508 TA, Utrecht, The Netherlands
R. E. I. Schropp
Affiliation:
Debye Institute, Utrecht University, PO Box 80000, 3508 TA, Utrecht, The Netherlands
Get access

Abstract

We used the internal photoemission technique to determine the exact valence and conduction band offsets at the a-SiC:H/c-Si interface and investigated with numerical simulations their effects on the photocarrier collection in p+a-SiC:H/n c-Si heterojunction solar cells. The valence and conduction band offsets were found to be 0.60 eV and 0.55 eV, respectively. Simulation results show that a high valence band offset increases the open circuit voltage (higher built-in potential) but on the other hand can decrease the fill factor (by blocking the collection of photogenerated holes at the front contact). Interestingly, despite having a large barrier inside the valence band (ΔEv = 0.6 eV), our highly doped p+a-SiC:H/n c-Si heterojunction solar cells show no collection problems (FF= 0.73). Both IPE measurements and simulation results indicate that tunneling of holes through this barrier in the valence band can explain this effect. For thin highly doped (Eact = 0.33 eV) p+a-SiC:H layers, the tunnel barrier becomes very narrow (< 70 Å) and the tunneling probability is strongly enhanced.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Sawada, T., Terada, N., Tsuge, S., Baba, T., Takahama, T., Wakisaka, K., Tsuda, S., and Nakano, S., Proc. of IEEE 1st World Conference on Photovoltaic Energy Conversion, Hawaii, 1994, (IEEE, New york, 1994), 1219.Google Scholar
2 Essick, J. and Nobel, Z., Phys. Rev. B 54 (7), 54 (1996).Google Scholar
3 Fang, R. and Ley, L., Phys. Rev. B 40, 3818 (1989).Google Scholar
4 Evangelisti, F., J. Non-Cryst. Solids 77/78, 969 (1985).Google Scholar
5 Rahman, M. Mahmudur and Furukawa, S., Jpn. J. Appl. Phys. 23 (5), 515 (1984).Google Scholar
6 Magafas, L., Georgoulas, N. and Thanailakis, A., Semicond. Sci. Technol. 7, 1363 (1992).Google Scholar
7 Gall, S., Hirschauer, R., Kolter, M., Braunig, D., Techn. Digest of the International PVSEC-9. Miyazaki, Japan, 1996, 335.Google Scholar
8 Cleef, M. van, Rubinelli, F., Ouwens, J. Daey, Schropp, R., Proc. of the 13th European Photovoltaic solar Energy Conference, Nice, France, 1995, (H.S. Stephens&Ass., Bedford, 1995), 1303.Google Scholar
9 Kane, E., Phys. Rev. 127, 131 (1962).Google Scholar
10 McElheny, P.J., Arch, J., Lin, H., Fonash, S., J. Appl. Phys. 64, 1254 (1988).Google Scholar
11 Cleef, M. van, Rubinelli, F., Rizzoli, R., Pinghini, R., Schropp, R., Weg, W. van der, submitted to Jpn. J. Appl. Phys.Google Scholar
12 Lee, S., Arch, J.K, Fonash, S.J., Wronski, C.R., Proc. of the 21st, IEEE Photovoltaic Specilalist Conference, Kissimimee, USA, 1990 (IEEE, New York, 1990), 1624.Google Scholar
13 Rubinelli, F. A., IEEE Transactions on Electron Devices, 39(11), 2584 (1992).Google Scholar
14 Cleef, M. van, Philippens, M., Rubinelli, F., Kolter, M., Schropp, R., in Amorphous Silicon Technology, edited by Hack, M., Schiff, E., Wagner, S., Schropp, R., Matsuda, A., MRS Symposium Proceedings No. 420 (Materials Research Society, Pittsburgh, 1996), 239 Google Scholar