Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T17:39:19.761Z Has data issue: false hasContentIssue false

Effects of ArF Excimer Irradiation on Multi-Energy Ge and Se Ion Implanted Silica

Published online by Cambridge University Press:  17 March 2011

R. H. Magruder III
Affiliation:
Dept. of Physics, Belmont University, Nashville, TN 37212
R. A. Weller
Affiliation:
Dept. of Electrical Engineering and Computer Science, Vanderbilt University, Nashville TN 37235
R. A. Weeks
Affiliation:
Dept. of Mechanical Engineering, Vanderbilt University, Nashville TN 37235
J. Wehrmeyer
Affiliation:
Dept. of Mechanical Engineering, Vanderbilt University, Nashville TN 37235
R. A. Zuhr
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
D. K. Hensley
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
Get access

Abstract

Silica samples were implanted at multiple energies with Se and Ge ions producing implanted layers ~ 2.4 µm in depth starting at ~ 0.5 µm below the surface. In each case, the concentration of implanted species was ~ 0.05 atomic %. The optical absorption of the samples was measured from 2.7 to 6.5 eV. In all spectra, local maxima at 5.0 eV with shoulders at 5.9 eV were observed. The spectra have been assumed to be describable as a superposition of Gaussian absorption bands with mean energies taken from the literature of 4.8, 5.01, 5.17, 5.88, and 7.15 eV. The relative strengths of each of these bands have been obtained by linear regression. These fits show that additional bands at 3.7 and 6.4 eV are required to fit the data for the Se samples, while bands at 5.54 and 6.4 eV are needed to fit the data for the Ge samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Othonos, A. and Kalli, K., Fiber Bragg Gratings Fundamentals and Applications in Telecommunications and Sensing, (Artech House, 1999).Google Scholar
2. Albert, J., Malo, B., Hill, K.O., Johnson, D.C., Brebner, J.L., and Leonelli, R., Opt. Letts. 17, 1652 (1992).Google Scholar
3. Verhaegen, M., Brebner, J.L., Allard, L.B. and Albert, J., Appl. Phys. Lett., 68, 3084 (1996).Google Scholar
4. Griffiths, J.E., Malyj, M., Espinosa, G.P. and Remeika, J.P., Phys. Rev. B30, 6978 (1984).Google Scholar
5. Friebele, E.J., Optical Properties of Glass, eds. Uhlmann, D.R. and Kreidl, N.J. (The American Ceramic Society, 1991) pp. 205263.Google Scholar
6. Tohmon, R., Mizuno, H., Ohki, Y., Sasagane, K., Nagasawa, K. and Hama, Y., Phys. Rev. B39, 1337 (1989).Google Scholar
7. Imai, H., Arai, K., Imagawa, H., Hosono, H. and Abe, Y., Phys. Rev. B 38, 12772 (1988).Google Scholar
8.Profile Code, Implant Sciences Corporation, Wakefield MA.Google Scholar
9. Magruder, R.H. III, Weeks, R.A., Weller, R.A., Zuhr, R.A., and Hensley, D. K., J. Non-Cryst. Solids 239, 78 (1998).Google Scholar
10. Magruder, R.H. III, Weeks, R.A., Weller, R.A., Zuhr, R.A., and Hensley, D. K., J. Non-Cryst. Solids 259, 73 (1999).Google Scholar
11. Weeks, R. A., Optical and Magnetic Properties of Ion Implanted Glasses, Materials Science and Technology, vol. 9, ed. Zarzychi, J., (VCH, 1991) pp. 331373 and References therin.Google Scholar
12. Weeks, R.A., Magruder, R.H. III, and Wang, P.W., J. Non-Cryst. Solids 149, 122 (1992).Google Scholar
13. Magruder, R.H. III, Weller, R.A., Weeks, R.A., Zuhr, R.A. and Hensley, D.K., J. Non-Cryst. Solids 274, 282 (2000).Google Scholar
14. Verhaegen, M., Brebner, J.L., Allard, L.B. and Albert, J., Appl. Phys. Lett. 68, 3084 (1996).Google Scholar
15. Antonini, M., Camagni, P., Gibson, P.N., and Manara, A., Rad. Effects 65, 41 (1982).Google Scholar
16. Imai, H., Arai, K., Imagawa, H., Hosono, H. and Abe, Y., Phys. Rev. B 38, 12772 (1988).Google Scholar