Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T04:39:24.064Z Has data issue: false hasContentIssue false

Effects in Silicon Explained by Atomic Hydrogen

Published online by Cambridge University Press:  26 February 2011

A. Schnegg
Affiliation:
Wacker-Chemitronic GmbH, Research Center, D-8263 Burghausen, FRG
H. Prigge
Affiliation:
Wacker-Chemitronic GmbH, Research Center, D-8263 Burghausen, FRG
M. Grundner
Affiliation:
Wacker-Chemitronic GmbH, Research Center, D-8263 Burghausen, FRG
P. O. Hahn
Affiliation:
Wacker-Chemitronic GmbH, Research Center, D-8263 Burghausen, FRG
H. Jacob
Affiliation:
Wacker-Chemitronic GmbH, Research Center, D-8263 Burghausen, FRG
Get access

Abstract

The chemomechanical polishing mechanism is described as a corrosive attack of water forming Si-H and Si-OH groups. By adding ammonia or amines to the slurry we observe an irlfease of the resistivity corresponding to a neutralization of up to 1 × 1017 acceptor atoms cm−3 in the case of p-type silicon, whereas n-type silicon can show a slight reduction in resistivity due to the neutralization of the residual acceptor concentration.

SIMS measurements show the presence of hydrogen in the bulk. Using deuterium instead of hydrogen, a correlation could be established between the deuterium content of the wafer, measured by the effusion technique, and the degree of the acceptor compensation.

As can be shown by resistivity and C/V-measurements, under the conditions of polishing the supposed inactivator hydrogen migrates to a distance finally corresponding to the thickness of a wafer. This is contrary to the comm on method of plasma treatment, where a damaged silicon layer is supposed to act as a barrier to the hydrogen diffusion. Differences in the IR spectra can be explained this way.

Crystal imperfections in the bulk and on the surface influences the migration of hydrogen essentially.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

/1/Pearton, S.J., Corbett, J.W., and Shi, T.S., Appl. Phys. A 43, 153 (1987)Google Scholar
/2/Seager, C.H., Anderson, R.A., and Panitz, J.K. G., J. Mater. Res. 2, 96 (1987)Google Scholar
/3/Pearton, S.J. and Tavendale, A.J., Phys. Rev. B, 26,7105, (1982)Google Scholar
/4/Panitz, J.K.G., Sharp, D.J., and Hills, C.R., J. Vac. Sci. Technol. A23, 2716, (1985)Google Scholar
/5/Frieser, R.G., Montillo, F.J., Zingerman, N.B., Chu, W.K., and Mader, S.R., J. Electrochem. Soc. 130, 2237 (1983)Google Scholar
/6/Wang, J.S., Fonash, S.J., and Ashok, S., IEEE Electron Device Letters, EDL–4, 432 (1983)Google Scholar
/7/Gale, R., Feigl, F.J., Magee, C.W., and Young, D.R., J. Appl. Phys. 54, 6938 (1983)Google Scholar
/8/Van Wieringen, A. and Warmoltz, N., Physica 22, 849, (1956)Google Scholar
/9/Schnegg, A., Grundner, M., and Jacob, H., in Semiconductor Silicon 1986, Proceedings 86–4 Electrochem. Soc. 1986, p. 198–205Google Scholar
/10/Vieweg-Gutberlet, F.G. and Siegesleitner, P.F., J. Electrochem. Soc. 126 (10), 1793 (1979)Google Scholar
/11/Schnegg, A., Lampert, I., and Jacob, H., Electrochem. Soc. Ext. Abstr. 85–1 No. 271 (1985)Google Scholar
/12/Grundner, M. and Jacob, H., Appl. Phys. A39, 73 (1986)Google Scholar
/13/Lampert, I., FuBstetter, H., and Jacob, H., Electrochem. Soc. 133, 1472 (1986)Google Scholar
/14/Weber, J. et al, to be publishedGoogle Scholar
/15/Reichel, J., Kristall u. Technik 13, 721 (1978)Google Scholar
/16/Beyer, W., KFA Jülich, private communicationGoogle Scholar
/17/Pankove, J.T., Zanzucchi, P.J., Magee, C.W., and Lucovsky, G., Appl. Phys. Lett. 46, 421 (1985)Google Scholar
/18/DeLeo, G.G. and Fowler, W.B., Phys. Rev. B31, 6861 (1985)Google Scholar
/19/Assali, L.V.C. and Leite, J.R., Phys. Rev. Lett. 55, 980 (1985), 56, 403 (1986)Google Scholar
/20/Pantelides, S.T., Appl. Phys. Lett. 50, 995 (1987)Google Scholar
/21/Sah, C.T., Sun, J.Y.C., and Tzou, J.J.T., Appl. Phys. Lett. 43, 204 (1983)Google Scholar
/22/Menzel, M. and Alpern, P., Siemens AG, private communicationGoogle Scholar
/23/Tavendale, A.J., Williams, A.A., Alexiev, D., and Pearton, S.J. in Oxygen, Carbon, Hydrogen, and Nitrogen in Crystalline Silicon edited by Corbett, J.W., Mikkelsen, J.C., and Pearton, S.J. (Mater. Res. Soc. 59, 1986)Google Scholar
/24/Hahn, P.O., Lampert, I., and Schnegg, A. in SiO2 and Its Interfaces ed. by Pantelides, S.T. and Lucovsky, G. (MatTer. Res. Soc. Proc. to be published, Boston 1987)Google Scholar
/25/Hahn, P.O. in Thin Films – Interfaces and Phenomena edited by Nemanich, R.J. and Ho, P.S. (Mater. Res. Soc. Proc. 54 p. 645650, 1986)Google Scholar
/26/Stavola, M., Pearton, S.J., Lopata, J., and Dautrement-Smith, W.C., Appl. Phys. Lett. 50, 1086, (1987)Google Scholar
/27/Schulze, G. and Henzler, M., Surf. Sci., 124, 336, (1983)Google Scholar
/28/Appelbaum, J.A., Hamann, D.R., and Tasso, H.H., Phys. Rev. Lett. 38, 1478 (1977)Google Scholar