Published online by Cambridge University Press: 15 February 2011
The effects of N2, O2, and Ar gas RTA treatments on Ti, TiN, and Ti-polycide film characteristics have been investigated in anticipation of the trend in DRAM development toward lower resistance materials to replace the standard WSi2, WSi2 on doped polycrystalline silicon (W-polycide), and doped polysilicon conductors used in interconnections, transistor gates, and contact-hole plugs, respectively. The reactivities of Ti and TiN in N2 and O2 gases are markedly different. Film characteristics such as sheet resistance, crystallinity, and elemental composition remain unchanged for TiN RTA-treated in N2 but vary significantly for Ti. In the case of Ti, XRD and XPS data indicate the formation of intermediate Ti-rich TiN or Ti2N compounds prior to the final TiN phase. Similarly, RTO-treated TiN shows a slower oxide growth rate compared with that of Ti. In the case of TiN, a surface layer of rutile phase TiO2 is directly formed, whereas for Ti the data suggest the formation of Ti-rich oxides such as Ti2O or TiO prior to the final TiO2 rutile phase. RTA treatment in different ambient gases can be used to create multilayer Ti-polycide and TiN/Ti metallization with self-aligned TiO2 passivation and etch-stop layers. TiN can also be applied with other materials and processes to form new DRAM memory cell capacitor structures.