Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T09:38:32.938Z Has data issue: false hasContentIssue false

The Effect of ZnO Sputtering Deposition Parameters on the Performances of Back Reflector Enhanced Amorphous Silicon Solar Cells

Published online by Cambridge University Press:  15 February 2011

E. Terzini
Affiliation:
ENEA- Centro Ricerche, P.O. Box 32, 80055 Portici, Naples, Italy
A. Rubino
Affiliation:
ENEA- Centro Ricerche, P.O. Box 32, 80055 Portici, Naples, Italy
R. De Rosa
Affiliation:
ENEA- Centro Ricerche, P.O. Box 32, 80055 Portici, Naples, Italy
M. L. Addonizio
Affiliation:
ENEA- Centro Ricerche, P.O. Box 32, 80055 Portici, Naples, Italy
Get access

Abstract

Low resistivity (5×10−4Ω cm) and high transmittance (T > 82 %) ZnO films have been obtained by RF magnetron sputtering deposition of ZnO/Al2O3 (2.5 % wt.) target. The doped oxide films have been investigated by optical and electrical measurements and by scanning electron microscopy. The optimized recipes have been applied to the realisation of amorphous p-i-n solar cells back reflector in the structure: TCO/pin/ZnO/Ag.

The application of ZnO/Ag leads to an increase of the Jsc current of about 13% but a poorer fill factor steadily affects the characteristics of the devices. We demonstrate that a thicker n+ layer of about three times the standard one is effective in driving the FF toward the normal values.

The cells' behaviour has been ascribed to a thinning of the n+ layer resulting from a sputtering action of energetic oxygen atoms during the ZnO deposition process. This effect has been evidenced by measuring the absorbance of SnO2/a-Si (20 nm) /ZnO in comparison with SnO2/a-Si (20 nm) structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Iida, H., Shiba, N., Mishuku, T., Karasawa, H., Ito, A., Yamanaka, M. and Hayashi, Y., IEEE Electron Device Lett., EDL–4, 157 (1983)Google Scholar
2. Iida, H., Mishuku, T., Ito, A., Hayashi, Y., IEEE Transaction on Elect. Devices, ED–34 (1987)Google Scholar
3. Yamada, A. and Konagai, M., Tech. Digest of Inter. PVSEC-7, Nagoya, 47, (1993)Google Scholar
4. Ikeda, T., Sato, K., Hayashi, Y., Wakayama, Y., Adachi, K. and Nishimura, H., Tech. Digest of Inter. PVSEC-7, Nagoya, 17 (1993)Google Scholar
5. Lau, C.K., Tiku, S.K. and Bube, R.H., J. Electrochem. Sic. 127, 1843 (1980)Google Scholar
6. Roth, A.P. and Williams, D.F., J. Appl. Phys. 52 (11), 6685, (1981)Google Scholar
7. Major, S., Banerjee, A. and Chopra, K.L., Thin Solid Films, 125, 179 (1985)Google Scholar
8. Nanto, H., Minami, T., Shooji, S. and Takata, S., J. Appl. Phys. 55 (4), 1029 (1984)Google Scholar
9. Minami, T., Sato, H., Nanto, H. and Takata, S., Jpn. J. Appl. Phys. 24 (10), L781 (1985)Google Scholar
10. Schropp, R.E.I. and Madan, A., J. Appl. Phys. 66 (5), 2027 (1989)Google Scholar
11. Minami, T., Sato, H., Sonoda, T., Nanto, H. and Takata, S., Thin solid Films, 171, 307 (1989)Google Scholar
12. Terzini, E., Cavaliere, G., Conte, G., Mastrogiacomo, A., Nobile, G., Rubino, A., 12th EC PVSEC, Amsterdam, The Netherlands, 1276 (1994)Google Scholar
13. Jin, Z.-C., Hamberg, I., Granqvist, C.C., J. Appl. Phys., 64, (10), 5117 (1988)Google Scholar
14. Martinez, M.A., Herrero, J. and Gutierrez, M.T., Solar Ener. Mat. and Solar Cells, 31, 489 (1994)Google Scholar
15. Thornton, J.A., J. Vac. Sci. Technol., 11, 666 (1974)Google Scholar
16. Tominaga, K., Kuroda, K. and Tada, O., Jpn. J. Appl. Phys. 27 (7), 1176 (1988)Google Scholar