No CrossRef data available.
Published online by Cambridge University Press: 31 January 2011
Doping polymers with inorganic nanomaterials to form hybrid nanocomposites is an attractive approach to develop new lightweight optoelectronic materials with unique or improved properties. In this work, poly(3-hexylthiophene) (P3HT) Schottky diodes, doped with ZnO nanowires at different P3HT-to-ZnO concentrations, were studied. Device fabrication was carried out by drop casting the nanocomposite on a Pt electrode followed by thermal evaporation of an Al top electrode. ZnO nanowires were prepared via a physical vapor method with Zn as a source. The nanowires were dispersed in chlorobenzene, then the P3HT powder was added. Properties of the diodes were investigated using capacitance-voltage and current-voltage measurements. In addition, electrical resistance of the nanocomposite films was also investigated using a two-point probe measurement with Pt as Ohmic contacts. Results showed that ZnO nanowire doping decreases the built in potential of the diode and the electrical resistance of the nanocomposite film.