Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T18:18:35.988Z Has data issue: false hasContentIssue false

Effect of Ti Microaddition on Cavitation Behavior During Uniaxial Hot-Tensile of Fe-22Mn-1.5Al-1.3Si-0.5C Austenitic TWIP Steel

Published online by Cambridge University Press:  02 March 2016

Antonio E. Salas-Reyes
Affiliation:
Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich., 58066, México. E-mail: [email protected], [email protected] Ingeniería en Metalúrgica, Universidad Politécnica de Juventino Rosas, Comunidad de Valencia, Santa Cruz de Juventino Rosas, Gto., 38253, México.
Ignacio Mejía
Affiliation:
Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich., 58066, México. E-mail: [email protected], [email protected]
José M. Cabrera
Affiliation:
Departament de Ciència dels Materials i Enginyeria Metal•lúrgica, ETSEIB – Universitat Politècnica de Catalunya. Av. Diagonal 647, 08028 – Barcelona, Spain. Fundació CTM Centre Tecnològic, Plaça de la Ciència, 2, 08243– Manresa, Spain.
Get access

Abstract

It is well-known that metal and alloys develop internal cavities when subjected to uniaxial or multiaxial tensile strains at elevated temperature. In most cases, cavitation may lead to premature failure during forming. Therefore, damage and fracture behavior imposes significant limitations in hot metal-forming processes. Although high-Mn austenitic TWIP steels exhibit a unique combination of strength and ductility, cavitation during hot working is one issue that must be tackled. The aim of this research work is to determine the effect of Ti microaddition on cavity mechanisms of Fe-22Mn-1.5Al-1.3Si-0.5C TWIP steel under uniaxial hot-tensile condition at 800 °C and constant true strain rate of 10-3 s-1. For this purpose, light optical (LOM) and scanning electron (SEM) microscopies and image analysis were applied to quantify cavities formation along longitudinal section of deformed samples near to the fracture surface. The number of cavities greater than 10 µm (critical length) in non-microalloyed and Ti microalloyed TWIP steels were 2.75 and 3.75 cavities/mm2, respectively. On the other hand, average cavity area was 125 and 152 µm2, respectively. Both TWIP steels showed cavities type “r”, “l” and “A”. Finally, Ti microaddition to TWIP steel resulted in a predominant brittle fracture behavior due to finer grain-boundary precipitation, which weakens grains cohesion and accelerates crack growth by grain-boundary sliding. In this case, crack growth behavior is explained in terms of a void interconnection mechanism.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Scott, C., Allain, S., Faral, M. and Guelton, N., Rev. Metall. Paris 103, 293 (2006).CrossRefGoogle Scholar
Zhang, J., Di, H., Wang, X., Cao, Y., Zhang, J. and Ma, T., Mater. Design 44, 354 (2013).CrossRefGoogle Scholar
Lin, J., Liu, Y. and Dean, A., Int. J. of Damage Mech. 14, 299 (2005).CrossRefGoogle Scholar
Nicolaou, P.D. and Semiatin, S.L., Scripta Mater. 48, 345 (2003).CrossRefGoogle Scholar
Madou, K., Leblond, J.B. and Morin, L., Eur. J. Mech. 42, 490 (2013).CrossRefGoogle Scholar
Kondori, B. and Benzerga, A.A., Exp. Mech. 54, 493 (2014).CrossRefGoogle Scholar
Chokshi, A.H., J. Mater. Sci. 21, 2073 (1986).CrossRefGoogle Scholar
Hurtado, E., Garnica, P. and López, A., Inf. Tecnol. 16, 45 (2005).Google Scholar
Salas-Reyes, A.E., Mejía, I., Bedolla-Jacuinde, A., Boulaajaj, A., Calvo, J. and Cabrera, J.M., Mater. Sci. Eng. A 611, 77 (2014).CrossRefGoogle Scholar
Baradaran, A.H., Zarei-Hanzaki, A., Abedi, H.R., Fatemi-Varzaheh, S.M. and Imandoust, A., Mater. Sci. Eng. A 561, 411 (2013).CrossRefGoogle Scholar
Shabrov, N.M., Sylven, E., Kim, S., Sherman, D.H., Chuzhoy, L., Briant, C.L. and Needleman, A., Metall. Mater, Trans. A 35, 1745 (2004).CrossRefGoogle Scholar
Mintz, B. and Crowther, D.N., Int. Mater. Rev. 55, 168 (2010).CrossRefGoogle Scholar
Rittel, D. and Roman, I., Metall. Trans. A 19, 2269 (1988).CrossRefGoogle Scholar
Mulford, R.A., Mcmahon, C.J., Pope, D.P. and Feng, H.C., Metall. Trans. A 8, 1183 (1976).CrossRefGoogle Scholar
Hamada, A.S. and Karjalainen, L.P., Mater. Sci. Eng. A 528, 1819 (2011).CrossRefGoogle Scholar