Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T02:09:43.105Z Has data issue: false hasContentIssue false

Effect of Thermal Annealing on Proton Conduction in Ion Exchange Membranes

Published online by Cambridge University Press:  27 July 2011

Osung Kwon
Affiliation:
Department of Physics, University of Missouri - Kansas City, Kansas City, MO 64110
Shijie Wu
Affiliation:
Agilent Technologies, Inc., 4330 W. Chandler Blvd., Chandler, AZ 85226
Da-Ming Zhu*
Affiliation:
Department of Physics, University of Missouri - Kansas City, Kansas City, MO 64110
*
*Corresponding author, Email: [email protected]
Get access

Abstract

The configurations of proton channel network on the surface of Nafion® membranes were studied using current sensing atomic force microscopy after the membranes were annealed at elevated temperatures, aimed at understanding the effect of aging process in the membranes. The results reveal that proton conductance of the membranes becomes more uniform and the proton channels become chain-like aligning in parallel to the membrane surface. Accompanied to the configuration changes, the proton conductivity of the membrane shows an increase. As the annealing continues, the chain-like configuration for the proton channels persists but the conductance of the membranes decreases. The time constant of the conductivity decay decreases with increase of the annealing temperature. The observed changes can be attributed to reorientation of proton channels near the membrane surface from perpendicular to parallel to the surface as the annealing temperature approaches the glass transition of the membranes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) For reviews, see, O’Hayre, R., Colella, W., S-W., Cha, and Fritz, P. B., Fuel Cell Fundamentals, 2nd ed. (John Wiley & Sons: New York, NY, 2009).Google Scholar
(2) Mauritz, K. and Moore, R. B., Chemical Reviews 104, 4535 (2004).Google Scholar
(3) Hsu, W. Y. and Gierke, T. D., J. Membr. Sci. 13, 307 (1983).Google Scholar
(4) Dreyfus, B., Gebel, G., Aldebert, P., Pineri, M., Escoubes, M. and Thomas, M., J. Phys. (Paris) 51, 1341 (1990).Google Scholar
(5) Fujimura, M., Hashimoto, R. and Kawai, H., Macromolecules 15, 136144 (1982).Google Scholar
(6) Gebel, G. and Moore, R. B., Macromolecules 33, 48504855 (2000).Google Scholar
(7) Collette, F. M., Lorentz, C., Gebel, G. and Thominette, F., J. Membr. Science 330, 21 (2009).Google Scholar
(8) Rollet, A. L., et al. , J. Polym. Sci., Part B: Polym. Phys. 39, 548 (2001).Google Scholar
(9) Haubold, H. G., Vad, T., Jungbluth, H., and Hiller, P., Electrochim. Acta 2001, 46, 15591563.Google Scholar
(10) Rubatat, L., Rollet, A. L., Gebel, G., Diat, O., Macromolecules 2002, 35, 40504055.Google Scholar
(11) Gierke, T. D., Munn, G. E. and Wilson, F. C., J. Polym. Sci.: Polym. Phys. 19, 1687 (1981).Google Scholar
(12) Hsu, W. Y. and Gierke, T. D., Macromolecules 15, 101105 (1982)Google Scholar
(13). van der Heijden, P. C., Rubatat, L. and Diat, O., Macromolecules 37, 53275336 (2004).Google Scholar
(14) Schmidt-Rohr, K. and Chen, Q., Nat. Mater 7, 7583 (2008).Google Scholar
(15) Nguyen, T. V., Nguyen, M. V., Lin, G., Rao, N., Xie, X. and Zhu, Da-Ming, Electrochemical and Solid State Letters 9, A88A91 (2006).Google Scholar
(16) Xie, X., Kwon, O., D-M., Zhu, Nguyen, T. V. and Lin, G., J. Phys. Chem. B111, 6134 (2007).Google Scholar
(17) Kang, Y., Kwan, O., Xie, X. and D-M., Zhu, J. Phys. Chem. B113, 1504015046 (2009); O. Kwon, Y. Kang, S. Wu and D-M. Zhu, ibid., B114, 5365-5370(2010).Google Scholar
(18) Bussian, D. A., O’Dea, J. R., Metiu, H. and Buratto, S. K., Nanolett. 7, 227232 (2007).Google Scholar
(19) Aleksandrova, E., Hiesgen, R., Eberhard, D., Friedrich, K. A., Kaz, T., and Roduner, E., ChemPhysChem 8, 519 (2007).Google Scholar
(20) Kundu, S., Simon, L. C., Fowler, M. and Grot, S., Polymer 46, 1170711715 (2005).Google Scholar
(21) Bouaskarne, M., Amokrane, S. and Regnaut, C., J. of Chem. Phys. 114, 2442 (2001).Google Scholar