Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-09-20T23:28:38.624Z Has data issue: false hasContentIssue false

Effect of the Weak Links on the Surface Resistance of YBa2Cu3Ox Bulk Material

Published online by Cambridge University Press:  26 February 2011

J. Wosik
Affiliation:
Texas Center for Superconductivity at University of Houston, Houston, Texas 77204.
L. M. Xie
Affiliation:
Texas Center for Superconductivity at University of Houston, Houston, Texas 77204.
J. Halbritter
Affiliation:
Texas Center for Superconductivity at University of Houston, Houston, Texas 77204.
R. Chau
Affiliation:
Texas Center for Superconductivity at University of Houston, Houston, Texas 77204.
A. Samaan
Affiliation:
Texas Center for Superconductivity at University of Houston, Houston, Texas 77204.
J. C. Wolfe
Affiliation:
Texas Center for Superconductivity at University of Houston, Houston, Texas 77204.
V. Selvamanickam
Affiliation:
Texas Center for Superconductivity at University of Houston, Houston, Texas 77204.
K. Saláma
Affiliation:
Texas Center for Superconductivity at University of Houston, Houston, Texas 77204.
Get access

Abstract

Dc magnetic field, temperature, and magnetic history dependencies of the millimeter-wave surface resistance have been measured in high quality grain-aligned and in polycrystalline YBa2Cu3Ox bulk material. The measurements were carried at 75 GHz using the endplate of the cavity replacement method. The data is interpreted in terms of the presence of intra- and inter-grain types of weak links. The values of characteristic critical fields of the bulk and the weak link junctions are determined and discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Clem, J. R., Phys. C 153–155, 50 (1989).Google Scholar
2 Shridhar, S., Wu, Dong-Ho, and Kennedy, W., Phys. Rev. Lett. 67, 1873 (1989).Google Scholar
3 Halbritter, J., J. Appl. Phys. 68, 6315 (1990) and J. Appl. Phys. 71, 339 (1992).Google Scholar
4 Fehrenbacher, R., Geschkenbein, V. B., and Blatter, G., Phys. Rev. B 45, 5450 (1992).Google Scholar
5 Wosik, J., Xie, L. M., Chau, R., Samaan, A., Wolfe, J. C., Selvamanickam, V., and SalAma, K., Proc. of the TCSUH Workshop, Houston, February 1992 (World Scientific, Singapore)Google Scholar
6 Giura, M., Marcon, R., and Fastampa, R., Phys. Rev. B 40, 4437 (1989).Google Scholar
7 Wosik, J., Xie, L. M., and Wolfe, J. C., to be published.Google Scholar
8 Wosik, J., Kranenburg, R., Wolfe, J.C., Selvamanickam, V., and Saláma, K., J. Appl. Phys. 1991.Google Scholar
9 Salama, K., Selvamanickam, V., Gao, L., and Sun, K., Appl. Phys. Lett. 54, 2352, (1989),Google Scholar
Selvamanickam, V., and Salama, K., Proc. MRS Fall Mtg. 169, 279, (1990).Google Scholar
10 Kozlowski, G., Appl. Phys. Lett. 54, 386 (1989).Google Scholar
11 Halbritter, J., Proc. of the 5th Superconducting rf Workshop, Hamburg, August 1991 (DESY, Hamburg, 1992).Google Scholar
12 Kupfer, H., Keller, C., Salama, K., and Selvamanickam, V., Appl. Phys. Lett. 55, 1903 (1989).Google Scholar
13 see e.g. Pakulis, E. J. and Osada, T., Phys. Rev. B 37, 5940 (1988).Google Scholar
14 Ji, L., Rzchowski, M. S., and Tinkham, M., Phys. Rev. B 42, 4838 (1990).Google Scholar