Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T00:00:46.483Z Has data issue: false hasContentIssue false

Effect of the Nucleation Layer on TiO2 Nanoflowers Growth via Solvothermal Synthesis

Published online by Cambridge University Press:  14 December 2012

Oscar A. Jaramillo
Affiliation:
CIE-UNAM, Priv. Xochicalco S/N, Col. Centro, Temixco, Mor. 62580, México
Reshmi Raman
Affiliation:
CIE-UNAM, Priv. Xochicalco S/N, Col. Centro, Temixco, Mor. 62580, México
Marina E. Rincón*
Affiliation:
CIE-UNAM, Priv. Xochicalco S/N, Col. Centro, Temixco, Mor. 62580, México
*
*Contact email: [email protected]
Get access

Abstract

TiO2 nanoflowers were obtained on modified ITO substrates by solvothermal synthesis. Surface modification was achieved with a layer of TiO2 seeds/nucleus obtained by dip-coating at various pH and dip cycles. Field emission scanning electron microscopy results indicated that at all nucleation conditions there was a dual population of TiO2 nanoparticles and nanoflowers. For a particular pH, the effect of increasing the number of dips was to increase the size and number of the nanoflowers, whereas for a fixed number of dips, the increase in pH causes a decrease in nanoflower population. The comparison with solvothermal films obtained on unmodified substrates indicates that TiO2 nanoflowers grew up on the nucleation sites. These microstructural changes determine the active surface area and sensing properties of the solvothermal films. At room temperature, no evidence of superior ethanol sensing properties was found for TiO2 nanoflowers, which show larger resistivity than TiO2 nanoparticles.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Roy, P., Berger, S. and Schmuki, P., Angew. Chem. Int. 50, 2904 (2011).CrossRefGoogle Scholar
Sun, Y., Liu, S., Meng, F., Liu, J., Jin, Z., Kong, L. and Liu, J. H., Sensors 12, 2610 (2012).CrossRefGoogle Scholar
Djenizian, T., Hanzu, I. and Knauth, P., J. Mater. Chem. 21, 9925 (2011).CrossRefGoogle Scholar
Chang, C., Chen, C., Chen, C., and Kuo, C., Thin Solid Films 520, 1546 (2011).CrossRefGoogle Scholar
Shao, F., Sun, J., Gao, L., Yang, S. and Luo, J., J. Phys. Chem. C 115, 1819 (2011).CrossRefGoogle Scholar
Rella, R., Spadavecchia, J., Manera, M., Capone, S., Taurino, A. and Martino, M., Sens. Acuators B 127, 426 (2007).CrossRefGoogle Scholar
Wang, Y., Tan, S., Wang, J., Tan, Z., Wu, Q., Jiao, Z. and Wu, Q., Chin. Chem. Lett. 22, 603 (2011).CrossRefGoogle Scholar
Paulose, M., Varghese, O., Mor, G., Grimes, C. and Ong, K., Nanotechnology 17, 398 (2006).CrossRefGoogle Scholar
Seeley, Z., Bandyopadhyay, A. and Bose, S., Thin Solid Films 519, 434 (2010).CrossRefGoogle Scholar
Omidvar, H., Goodarzi, S., Seif, A. and Azadmehr, A. R., Superlattice Microst. 50, 26 (2011).CrossRefGoogle Scholar
Addamo, M., Augugliaro, V., Di Paola, A., Garca-lopez, E., Loddo, V., Marc, G. and Palmisano, L., Thin Solid Films 516, 3802 (2008).CrossRefGoogle Scholar
Liu, B. and Aydil, E., J. Am. Chem. Soc. 131, 3985 (2009).CrossRefGoogle Scholar
Wei, Z., Roushi, L., Huang, T. and Yu, A., Electrochim. Acta 56 7696 (2011).CrossRefGoogle Scholar
Beuvier, T., Plouet, M.R., Le Granvalet, M. M., Brousse, T., Crosnier, O. and Brohan, L., Inorg. Chem. 49, 8457 (2010).CrossRefGoogle Scholar
Wang, X. and Xiao, P., J. Mater. Res. 21, 1189 (2006).CrossRefGoogle Scholar
Lin, W. C., Liu, R., Yang, W. D., Chung, Z. J. and Chueng, H. J., Adv. Mat. Res. 391392, 1334 (2012).Google Scholar
Li, Y., Yang, X. Y., Feng, Y., Yuan, Z. Y. and Su, B. L., CRC Cr. Rev. Sol. State 37, 1 (2012).CrossRefGoogle Scholar
Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T. and Niihara, K., Langmuir 14, 3160 (1998).CrossRefGoogle Scholar
Hatfield, J. A., Environmental Progress 23, 45 (2004).CrossRefGoogle Scholar
Hu, P., Du, G., Zhou, W., Cui, J., Lin, J., Liu, H., Liu, D., Wang, J. and Chen, S., J. Am. Chem. 2, 3263 (2010).Google Scholar