Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-04T22:14:44.451Z Has data issue: false hasContentIssue false

The Effect of the Microstructure of Diffusion Barriers on the Palladium Activation for Electroless Copper Deposition

Published online by Cambridge University Press:  01 February 2011

Seok Woo Hong
Affiliation:
Div. of Materials Science and Engineering, Hanyang University, 17 Haengdang-Dong, Seongdong-Ku, Seoul 133-791, Korea
Yong Sun Lee
Affiliation:
Div. of Materials Science and Engineering, Hanyang University, 17 Haengdang-Dong, Seongdong-Ku, Seoul 133-791, Korea
Ki-Chul Park
Affiliation:
Semiconductor R&D Center, Samsung Electronics Co., Ltd. San 24 Nongseori, Kiheungeup, Yongin-Si, Kyungki-Do 449-711, Korea
Jong-Wan Park
Affiliation:
Div. of Materials Science and Engineering, Hanyang University, 17 Haengdang-Dong, Seongdong-Ku, Seoul 133-791, Korea
Get access

Abstract

The effect of microstructure of dc magnetron sputtered TiN and TaN diffusion barriers on the palladium activation for autocatalytic electroless copper deposition has been investigated by using X-ray diffraction, sheet resistance measurement, field emission scanning electron microscopy (FE-SEM) and plan view transmission electron microscopy (TEM). The density of palladium nuclei on TaN diffusion barrier increases as the grain size of TaN films decreases, which was caused by increasing nitrogen content in TaN films. Plan view TEM results of TiN and TaN diffusiton barriers showed that palladium nuclei formed mainly on the grain boundaries of the diffusion barriers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Edelstein, D., Heidenreich, J., Goldblatt, R., Cote, W., Uzoh, C., Lustig, N., Roper, P., McDevitt, T., Motsiff, W., Simon, A., Dukovic, J., Wachnik, R., Rathore, H., Schulz, R., Su, L. and Slattery, J., IEDM Technical Digest, (Washington, DC, 1997) pp.773776.Google Scholar
2. Hu, C. K., Luther, B., Kaufman, F. B., Hummel, J., Uzoh, C. and Pearson, D. J., Thin Solid Films, 262 84 (1995).Google Scholar
3. Velo, L., Paranjpe, A., Moslehi, M., Shang, G., Omstead, T., Liu, Z., Bubber, R., Davis, C., Campbell, D. and Relja, B., in 1998 Proceedings VLSI Multilevel Interconnection Conference (VMIC), (Santa Clara, CA, 1998) pp. 6974.Google Scholar
4. Dubin, V.M., Shacham-Diamand, Y., Zhao, B., Vasudev, P.K. and Ting, C.H., J. Electrochem. Soc., 144 898 (1997).Google Scholar
5. Shacham-Diamand, Y., Dubin, V. M. and Angyal, M., Thin Solid Films, 262 93 (1995).Google Scholar
6. Cho, J. S. H., Kang, H. K., Wong, S. S. and Shacham-Diamand, Y., MRS. Bulletins, Jun., 31 (1993).Google Scholar
7. Hong, S.W., Shin, C.-H. and Park, J.-W., J. Electrochem. Soc., 149, G85 (2001).Google Scholar
8. Porter, D.A. and Easterling, K.E., Phase Transformations in Metals and Alloys, Chap. 5, Van Nostrand Reinhold Company, New York (1981).Google Scholar
9. Jena, A.K. and Chaturvedi, M.C., Phase Transformation in Materials, Chap. 5, Prentice Hall, New Jersey (1992).Google Scholar