Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:19:57.046Z Has data issue: false hasContentIssue false

Effect of the Heat Treatment on the Lithium Insertion Process in MoO3

Published online by Cambridge University Press:  16 February 2011

B. Yebka
Affiliation:
Laboratoire de Physique des Solides, associé au CNRS, Université Pierre et Marie Curie 4 place Jussieu, 75252 Paris Cedex 05, France
C. Julien
Affiliation:
Laboratoire de Physique des Solides, associé au CNRS, Université Pierre et Marie Curie 4 place Jussieu, 75252 Paris Cedex 05, France
Get access

Abstract

We have studied the electrochemical characteristics of Li/MoO3-based batteries in relation with the morphology of the cathode-active material. The oxides and oxide-hydrates of molybdenum have been prepared with various degrees of heat treatement. The samples were characterized by X-ray diffraction, Raman spectroscopy, and conductivity measurements. The effect of the heat treatment on structural, optical and electrochemical properties are presented in this work. Thermodynamics and kinetics of lithium insertion were studied in MoO3 cathodes. Diffusion coefficients and enhancement factors were calculated as functions of the degree of lithium intercalation in the domain of the galvanic cell reversibility.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Julien, C., El-Farh, L., Balkanski, M., Hussain, O.M. and Nazri, G.A., Appl. Surf. Sci. 65-66, 325 (1993).Google Scholar
[2] Hinokuma, K., Kishimoto, A. and Kudo, T., J. Electrochem. Soc. 141, 876 (1994).Google Scholar
[3] Kihlborg, L., Arkiv. Kemi 21, 357 (1963).Google Scholar
[4] Crouch-Baker, S. and Dickens, P.G., Solid State Ionics 32-33, 219 (1989).Google Scholar
[5] Dampier, F.W., J. Electrochem. Soc. 121, 656 (1974).Google Scholar
[6] Margalit, N., J. Electrochem. Soc. 121, 1460 (1974).Google Scholar
[7] Besenhard, J.O. and Schollhorn, R., J. Power Sources 1, 267 (1976/1977).Google Scholar
[8] Christian, P.A., Carides, J.N., DiSalvo, F.J. and Waszczak, J.V., J. Electrochem. Soc. 127, 2315 (1980).Google Scholar
[9] Besenhard, J.O., Heydecke, J., Wudy, E., Fritz, H.P. and Foag, W., Solid State Ionics 8, 61 (1983).Google Scholar
[10] Kumagal, N., Kumagai, N. and Tanno, K., Electrochim. Acta 32, 1521 (1987).Google Scholar
[11] Kumagai, N., Kumagai, N. and Tanno, K., J. Appl. Electrochem. 18, 857 (1988).Google Scholar
[12] Sugawara, M., Kitada, Y. and Matsuki, K., J. Power Sources 26, 373 (1989).Google Scholar
[13] Julien, C. and Nazri, G.A., Solid State Ionics 68, 111 (1994).Google Scholar
[14] Julien, C., Khelfa, A., Guesdon, J.P. and Gorenstein, A., Appl. Phys. A 78, 173 (1994).Google Scholar
[15] Weppner, W. and Huggins, R.A., J. Electrochem. Soc. 124, 1569 (1977).Google Scholar
[16] Gtlnter, J.R., J. Solid State Chem. 5, 354 (1972).Google Scholar
[17] Nazri, G.A. and Julien, C., Solid State Ionics 53-56, 376 (1992).Google Scholar
[18] Anwar, M. and Hogarth, C.A., Int. J. Electronics 66, 901 (1989).Google Scholar
[19] Oswald, H.R., Gunter, J.R. and Dubler, E., J. Solid State Chem. 13, 330 (1975).Google Scholar
[20] Basu, S. and Worrell, W.L., in Fast Ion Transport in Solids, edited by Vashishta, P., Mundy, J.N. and Shenoy, G.K. (North-Holland, Amsterdam, 1979), p. 149.Google Scholar
[21] McKinnon, W.R. and Hearing, R.R., in Modem Aspects of Electrochemistry, vol. 15, edited by White, R., Bockris, J.O'M. and Conway, B.E. (Plenum, New York, 1983), p. 235.Google Scholar