Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T17:30:33.246Z Has data issue: false hasContentIssue false

Effect of the Grain Growth Process on the Characteristics for the Excimer Laser Crystallized Poly-Si Thin Film Transistors

Published online by Cambridge University Press:  15 February 2011

Hiroshi Okumura
Affiliation:
NEC Functional Devices Research Laboratories, Kawasaki 216, Japan, [email protected]
Hiroshi Tanabe
Affiliation:
NEC Functional Devices Research Laboratories, Kawasaki 216, Japan, [email protected]
Fujio Okumura
Affiliation:
NEC Functional Devices Research Laboratories, Kawasaki 216, Japan, [email protected]
Get access

Abstract

We have found, for excimer laser crystallized poly-Si thin films, that there are two different grain growth processes that depend on the energy density. Columnar grains grow laterally at lower energy densities. The other grain growth process at higher energy densities is shown to be secondary grain growth caused by a less oriented structure with fine granular grains. A TFT with the maximum mobility is obtained at the border for the lower energy grain growth. Grain boundary and intragrain defects around grain boundary formed through the secondary grain growth reduce the mobility in spite of considerable grain enlargement.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Brotherton, S.D., Semicond. Sci. Technol. 10, 721 (1995).Google Scholar
2. Morozumi, S., Kurihara, H., Takeshita, T., Oka, H. and Hasegawa, K., IEEE Trans. Electron Devices ED-32, 1546 (1985).Google Scholar
3. Sera, K., Okumura, F., Uchida, H., Itoh, S., Kaneko, S. and Hotta, K., IEEE Trans. Electron Devices ED-36, 2868 (1989).Google Scholar
4. Levinson, J., Shepherd, F.R., Scanlon, P.J., Westwood, W.D., Este, G. and Rider, M., J. Appl. Phys. 53, 1193 (1982).Google Scholar
5. Proano, R.E., Misage, R.S. and Ast, D.G., IEEE Trans. Electron Devices ED-36, 1915 (1989).Google Scholar
6. Kim, H.J. and Im, J.S. in Crystallization and Related Phenomena in Amorphous Materials. edited by Libera, M., Haynes, T.E., Cebe, P. and Dickinson, J.E. Jr. (Mat. Res. Soc. Symp. Proc. 321, Pittsburgh, PA 1994), p. 665670.Google Scholar
7. Kuriyama, H., Nohda, T., Aya, Y., Kuwahara, T., Wakisaka, K., Kiyama, S. and Tsuda, S., Jpn. J. Appl. Phys. 33, 5657 (1994).Google Scholar
8. Tanabe, H., Sera, K., Nakamura, K., Hirata, K., Yuda, K. and Okumura, F. in Crystallization and Related Phenomena in Amorphous Materials, edited by Libera, M., Haynes, T.E., Cebe, P. and Dickinson, J.E. Jr. (Mat. Res. Soc. Symp. Proc. 321, Pittsburgh, PA 1994), p. 677682.Google Scholar
9. Sameshima, T., Sekiya, M., Hara, M., Sano, N. and Kohno, A., J. Appl. Phys. 76, 7377 (1994).Google Scholar
10. Thompson, C.V. and Smith, H.I., Appl. Phys. Lett. 44, 603 (1984).Google Scholar
11. Suto, H., Tamura, I. and Nishizawa, T., Metallography, Maruzen, Tokyo, 1972, pp. 122125.Google Scholar
12. Köster, U., Phys. Stat. Sol. A, 48, 313 (1978).Google Scholar