Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-05T19:52:06.819Z Has data issue: false hasContentIssue false

Effect of the Ge preamorphisation dose on the thermal evolution of End of Range defects

Published online by Cambridge University Press:  21 March 2011

B. Colombeau
Affiliation:
CEMES/CNRS, 29 rue J.Marvig, 31055 Toulouse Cedex, France
F. Cristiano
Affiliation:
LAAS/CNRS, 7 av. colonel Roche, 31077 Toulouse Cedex, France
J-C. Marrot
Affiliation:
LAAS/CNRS, 7 av. colonel Roche, 31077 Toulouse Cedex, France
G. Ben Assayag
Affiliation:
CEMES/CNRS, 29 rue J.Marvig, 31055 Toulouse Cedex, France
A. Claverie
Affiliation:
CEMES/CNRS, 29 rue J.Marvig, 31055 Toulouse Cedex, France
Get access

Abstract

In this paper, we study the effect of the Ge+ preamorphisation dose on the thermal evolution of End of Range (EOR) defects upon annealing. Amorphisations were carried out by implanting Ge+ at 150 keV to doses ranging from 1×1015 ions/cm2 to 8×1015ions/cm2. Rapid Thermal Annealing (RTA) was performed for various time/temperature combinations in nitrogen ambient. Plan view transmission electron microscopy under specific imaging conditions was used to measure the size distributions and densities of the EOR defects. We found that for a fixed thermal budget, the increase in the Ge ion dose results in an increase in the defect density but has no effect on the defect size distribution. This invariance of the mean size of defects with respect to the initial supersaturation introduced in the matrix is an expected characteristic of a conservative Ostwald ripening mechanism. Moreover, the total number (Nb) of Si interstitial atoms bound to the EOR defects is a monotonically increasing function of the Ge ion dose. Furthermore, we found that Nb is directly proportional to the number of Si atoms in excess of the vacancies found below the a/c interface as calculated by MonteCarlo simulations. This is consistent with the “excess interstitial” model which explains the origin of the EOR defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Thomson, S., Packan, P., and Bohr, M., Intel Technology Journal Q3, (1998).Google Scholar
2. Claverie, A., Colombeau, B., Assayag, G. Ben, Bonafos, C., Cristiano, F., Omri, M. and Mauduit, B. de, Mat. Sci. in Semic. Proc., 3, 269 (2000).Google Scholar
3. Jones, K.S. and Venables, D., J. Appl. Phys., 69, 2931 (1991).Google Scholar
4. Laanab, L., Bergaud, C., Faye, M.M, Faure, J., Martinez, A. and Claverie, A., Mat. Res. Soc. Symp. Proc, 279, 381 (1993).Google Scholar
5. Schroeder, H., Fichner, P.F.P., Trinkaus, H., Fundamental aspects of inert gases in solids, ed. Donnely, S.E. and Evans, J.H., Plenum Press, New-York, 279, 289 (1991).Google Scholar
6. Bonafos, C., Mathiot, D. and Claverie, A., J. Appl. Phys., 83, 3008 (1998).Google Scholar
7. Jaraiz, M., Pelaz, L., Rubio, E., Barbolla, J., Gilmer, G.H., Eaglesham, D.J., Gossmann, H.J. and Poate, J.M., Mat. Res. Soc. Symp. Proc, 532, 3 (1998).Google Scholar
8. Bonafos, C., Colombeau, B., Carrada, M., Altibelli, A., Assayag, G. Ben, Garrido, B., Lopez, M., Perez-Rodriguez, A. and Claverie, A., Nucl. Instr. Meth. in Phys. Res. B, (2001) in print.Google Scholar
9.TRIM-95, after Ziegler, J.F., Biersack, J.P., and Littmark, D.. The Stopping and Ranges of Ions in Solids, vol.1, ed. Ziegler, J.F. (Pergamon, New York) (1985).Google Scholar
10. Claverie, A., Bonafos, C., Omri, M., Mauduit, B. de, Assayag, G. Ben, Martinez, A., Alquier, D. and Mathiot, D., Mat. Res. Soc. Symp. Proc, 438, 3 (1997).Google Scholar
11. Roth, E.G., Holland, O.W. and Thomas, D.K., Appl. Phys. Lett., 74, 679 (1999).Google Scholar
12. Giles, M.D., J. Electrrochem. Soc., 138, 1160 (1991).Google Scholar