Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T15:41:24.526Z Has data issue: false hasContentIssue false

Effect of Tensile Deformation on the Grain Size of Annealed Grain Non-Oriented Electrical Steel

Published online by Cambridge University Press:  01 February 2011

J. Salinas B.
Affiliation:
Centro de Investigación y Estudios Avanzados del IPN. P. O. Box 663, Saltillo Coahuila, México 25000. e-mails: [email protected], [email protected]
A. Salinas
Affiliation:
Centro de Investigación y Estudios Avanzados del IPN. P. O. Box 663, Saltillo Coahuila, México 25000. e-mails: [email protected], [email protected]
Get access

Abstract

An experimental study on the effect of tensile deformation on recrystallized grain size has been carried out in order to establishing the optimal deformation needed to accelerate grain growth during final annealing of semi-processed non-oriented Si-Al, low C electrical steel sheets. The material is deformed in tension to strains from 3 to 20% and then air-annealed at temperatures between 700 and 900 °C. The results show that the critical deformation for recrystallization (8%) is independent of annealing temperature. However, the critical recrystallized grain size increases with annealing temperature from 160 to 240 μm. After that, the grain size decreases exponentially with increasing deformation. Abnormal grain growth is observed in samples annealed at 700 °C after strains in the range from 7 to 12%. This type of behavior is also observed in specimens annealed at 800 and 900 °C, however, in this case the pre-strain range is expanded to 3–12%. Normal grain growth is observed in samples pre-deformed to strains larger than 12%. In this case, the final grain size after 2 hour anneal is about 55 μm, also independent of annealing temperature. The possible implications of these results on the magnetic properties of these materials are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mader, A. R., Metall. Trans. 17A, 1277 (1986).Google Scholar
2. Park, Jongtae, Szpunar, Jerzy A. and Cha, Sangyun, Mater. Sci. Forum Vol. 408–412, 1263 (2002).Google Scholar
3. Kestens, L., Jonas, J.J., Van Houtte, P., and Aernoudt, E. Metall. Trans. 27A, 2347 (1996).Google Scholar
4. Cheong, S. W., Hilinski, E.J., and Rollett, A.D., Metall. Trans 34A, 1321 (2003).Google Scholar
5. Humphreys, F. J., Mater. Sci. Forum Vol. 467–470, 107 (2004).Google Scholar
6. Murakami, K., Tarasiuk, J., Regle, H. and Bacroix, B.: Mater. Sci. Forum Vol. 467–470, 893 (2004).Google Scholar
7. Ashbrook, R. W. Jr, and Mader, A.R.: Metall. Trans. 16A 897 (1985).Google Scholar
8. Humphreys, F. J. and Hartherly, M.: Recrystallization and Related Annealing Phenomena, second edition (Elsevier Science, UK 2004) p.248.Google Scholar
9. Hong, Seung- Hyun and Lee, Dong Nyung, Mater. Sci. and Eng. A 375, 75 (2003).Google Scholar
10. Antonione, C., Della Gatta, G., Riontino, G., Venturello, G. J. Mater. Sci. 8, 1 (1973).Google Scholar
11. Antonione, C., Marino, F., Riontino, G., Tabasso, M. C., J. Mater. Sci. 12, 747 (1977).Google Scholar
12. Kovac, F., Dzubinsky, M., Sidor, Y. J. Magn. Magn. Mater. 296, 333 (2004).Google Scholar
13. Sidor, Yuriy, Kovac, Frantisek, Mater. Charac. 55 1 (2005).Google Scholar
14. Toshiro, T. and Takashi, T. ISIJ. 35, 548 (1995).Google Scholar