Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T17:26:31.405Z Has data issue: false hasContentIssue false

The Effect of Temperature and Si Concentration on the Mixing of AlAs/GaAs Superlattices

Published online by Cambridge University Press:  26 February 2011

Ping Mei
Affiliation:
Bell Communications Research, Inc., Red Bank, NJ 07701
H. W. Yoon
Affiliation:
Bell Communications Research, Inc., Red Bank, NJ 07701
T. Venkatesan
Affiliation:
Bell Communications Research, Inc., Red Bank, NJ 07701
S. A. Schwarz
Affiliation:
Bell Communications Research, Inc., Red Bank, NJ 07701
J. P. Harbison
Affiliation:
Bell Communications Research, Inc., Red Bank, NJ 07701
Get access

Abstract

The intermixing of AlAs/GaAs superlattices has been investigated as a function of Si concentration following anneals in the range of 500 to 900 C. The superlattice samples were grown by molecular beam epitaxy(MBE) and the near surface layers were doped with silicon at concentrations of 2×10 to 5×1018 cm-3. Si and Al depth profiles were measured with secondary ion mass spectrometry (SIMS).The diffusion length and activation energy of Al as a function of silicon dopant concentration are derived from the SIMS data. In the temperature range studied an activation energy for the Al interdiffusion of -4eV is observed with the diffusion coefficients increasing rapidly with Si concentration.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Meehan, K., Brown, J. M., Gavrilovic, P., Holonyak, N. Jr, Burham, R. O., Paoli, T. L. and Streifer, W., J. Appl. Phys. 55, 2672 (1984).CrossRefGoogle Scholar
2. Holonyak, N. Jr, Laidig, W. D., Camras, M. D., Coleman, J. J. and Dapkus, P. D., Appl. Phys. Lett. 39, 102 (1981).Google Scholar
3. Kaw abe, M., Matsuara, N., Shimizu, N., Hasegawa, F. and Nannichi, Y., Jpn. J. Appl. Phys. Lett. 23, L623 (1984).Google Scholar
4. Meehan, K., Gavrilovic, P., Holonyak, N. Jr, Burnham, R. D. and Thornton, R., Appl. Phys. Lett. 46, 75 (1985).Google Scholar
5. Coleman, J. J., Dapkus, P. D., Kirkpatrick, C. G., Camras, M. G. and Holonyak, N. Jr, Appl. Phys. Lett. 40, 904 (1982).Google Scholar
6. Schlesinger, T. E. and Kuech, T., Appl. Phys. Lett. 49, 519 (1986).Google Scholar
7. Venkatesan, T., Schwarz, S. A., Hwang, D. M., Bhat, R., Koza, M., Yoon, H. W., Mei, P., Arakawa, Y. and Yariv, A., Appl. Phys. Lett. 49, 701 (1986).Google Scholar
8. Venkatesan, T., Schwarz, S. A., Hwang, D. M., Bhat, R., Yoon, H. W., and Arakawa, Y., Proc. of IBMM Conf., Catania, Italy, 1986, Ed. Rimini, E., Elsevier Press, The Netherlands.Google Scholar
9. Schwarz, S. A., Venkatesan, T., Bhat, R., Koza, M., Yoon, H. W., Arakawa, Y. and Mei, P., Proc. of the Mat. Res. Soc, Vol. 56, 321.CrossRefGoogle Scholar
10. Schwarz, S. A., Venkatesan, T., Hwang, D. M., Yoon, H. W., Arakawa, Y., Appl. Phys. Lett, to be published (11/86).Google Scholar
11. Iimura, Y., Yui, D. and Kawabe, M., Ext. Abstr. of the 18th (1986 Int.) Conf.on Solid State Devices and Materials, Tokyo, 1986, pp. 623626.Google Scholar
12. Greiner, M. E. and Gibbons, J. F., Appl. Phys. Lett. 44, 760 (1984).CrossRefGoogle Scholar
13. Greiner, M. E. and Gibbons, J. F., J. Appl. Phys. 57, 5181 (1985).Google Scholar
14. Kavanagh, K. L., Mayer, J. W., Magee, J. W., Sheets, J., Tong, J. and Woodall, J. M., Appl. Phys. Lett. 47, 1208 (1985).Google Scholar
15. Cibert, J., Petroff, P., Werder, D. J., Pearton, S. J., Gossard, S. J. and English, J. H., Appl. Phys. Lett. 49, 223 (1986).Google Scholar
16. Chang, L. L. and Koma, A., Appl. Phys. Lett. 29, 138 (1976).Google Scholar
17. Ishibashi, T., Tarucha, S. and Okamoto, H., Jap. J. Appl. Phys. 21, L476 (1982).Google Scholar