Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T07:39:58.189Z Has data issue: false hasContentIssue false

Effect of Temperature and Bicarbonate Concentration on the Kinetics of UO2(s) Dissolution Under Oxidizing Conditions

Published online by Cambridge University Press:  03 September 2012

J. de Pablo
Affiliation:
Department of Chemical Engineering, Universitat Politècnica Catalunya, 08028 Barcelona., Spain
I. Casas
Affiliation:
Department of Chemical Engineering, Universitat Politècnica Catalunya, 08028 Barcelona., Spain
J. Giménez
Affiliation:
Department of Chemical Engineering, Universitat Politècnica Catalunya, 08028 Barcelona., Spain
M. Molera
Affiliation:
Department of Chemical Engineering, Universitat Politècnica Catalunya, 08028 Barcelona., Spain
M. E. Torrero
Affiliation:
Department of Chemical Engineering, Universitat Politècnica Catalunya, 08028 Barcelona., Spain
Get access

Abstract

The dissolution rate of unirradiated UO2 (s) has been studied as a function of hydrogen carbonate concentration at three different temperatures (298.15 K, 313.15 K and 333.15 K) under oxidizing conditions in a continuous flow-through reactor with a thin layer of solid particles (particle size from 100 to 300 μm). From the results of these experiments, two different rate laws have been determined. At high temperature (313.15 K and 333.15 K), we obtained a dissolution rate proportional to hydrogen carbonate concentration while at 298.15 K, the rate almost depends on the square root of the hydrogen carbonate concentration. This indicates a different reaction mechanism depending on temperature which can be related to the oxidation step of the overall process. The apparent activation energy obtained was 41 kJ mo1−1.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Gray, W.J and Steward, S.A., High Level Radioactive Waste Management of the Fith International Conference (American Nuclear Society 1994) pp 26022608.Google Scholar
2 Gray, W.J and Steward, S.A., J. Nucl. Mater. 190, 46 (1992).Google Scholar
3 Bruno, J. et al. , this issue.Google Scholar
4 Casas, I., Giménez, J., Martí, V., Torrero, M.E. and de Pablo, J., Radiochim. Acta 66/67, 23 (1994).10.1524/ract.1994.6667.special-issue.23Google Scholar
5 Shoesmith, D.W., Sunder, S., Mailey, M.G. and Wallace, G.J., Corrosion Science 29, 1115 (1989).10.1016/0010-938X(89)90048-6Google Scholar
6 Torrero, M. E., Baraj, E., de Pablo, J., Giménez, J. and Casas, I., Int. J. Chem. Kinetic (in press).Google Scholar
7 Bruno, J., Casas, I., Cera, E., de Pablo, J., Giménez, J. and Torrero, M.E. in Scientific Basis for Nuclear Waste Management XVIII, edited by Murakami, T. and Ewing, R.C. (Mat. Res. Soc. Symp. Ser. 353, Pittsburg, PA 1995) pp. 601608.Google Scholar
8 Grandstaff, D.E., Econ. Geol. 71, 1493 (1976).10.2113/gsecongeo.71.8.1493Google Scholar
9 Grambow, B., Spent Fuel Dissolution and Oxidation. An evaluation of Literature Data, SKB Technical Report 89–13, 1989, pp. 142.Google Scholar
10 Bruno, J., Casas, I. and Puigdomenech, I., Geochim. Cosmochim. Acta 55, 647 (1991).10.1016/0016-7037(91)90330-8Google Scholar
11 Robbins, J.C., Can. Inst. Min. Metall. Bull. 71, 61 (1978).Google Scholar
12 Lasaga, A.C., Soler, J.M., Ganor, J., Burch, T.E. and Nagy, K.L., Geochim. Cosmochim. Acta 58, 2361 (1994).10.1016/0016-7037(94)90016-7Google Scholar
13 Lasaga, A.C., J. Geophys. Res. 89, 4009 (1984).10.1029/JB089iB06p04009Google Scholar
14 Hiskey, J.B., Trans. Inst. Nin. Metall. Sect. C, 88, C145 (1979).Google Scholar
15 Thomas, G.F. and Till, G., Nucl. Chem. Waste Manag. 5, 141 (1984).10.1016/0191-815X(84)90044-5Google Scholar
16 Johnson, L.H. and Joling, H.H. in Scientific Basis for Nuclear Waste Management, vol. 6, edited by Topp, S.V. (North-Holland, Amsterdam, 1982) pp 321.Google Scholar
17 Stone, A.T. and Morgan, J.J., in Aquatic Surface Chemistry edited by Stumm, W. (Wiley Interscience Pub. 1987) pp 247.Google Scholar
18 Gray, W.J., Steward, S.A., Tait, J.C. and Shoesmith, D.W., High Level Radioactive Waste Management of the Fith International Conference (American Nuclear Society 1994) pp 25972601.Google Scholar