Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-20T05:09:05.026Z Has data issue: false hasContentIssue false

Effect of surface modification on the electrical properties of TiO2 and SnO2 nanopowders

Published online by Cambridge University Press:  10 February 2011

Fabienne Chancel
Affiliation:
LMCTS, ESA 6015 CNRS, Faculty of Sciences, 123 Av. A. Thomas, F-87060 Limoges (France).
Jérôme Tribout
Affiliation:
LMCTS, ESA 6015 CNRS, Faculty of Sciences, 123 Av. A. Thomas, F-87060 Limoges (France).
Marie-Isabelle Baraton
Affiliation:
LMCTS, ESA 6015 CNRS, Faculty of Sciences, 123 Av. A. Thomas, F-87060 Limoges (France).
Get access

Abstract

The surface modification of titania and tin dioxide nanopowders by hexamethyldisilazane and hexamethyldisiloxane grafting has been followed in situ by FT-IR spectroscopy. A grafting mechanism is proposed for both compounds and the formation of new surface species is discussed. Since TiO2 and SnO2 are widely used in chemical gas sensors due to their electrical properties, the respective behaviors of the non-grafted and grafted samples in reducing (CO) environment as well as the humidity effects are compared. Because the transmitted IR energy depends on the concentration of the free carriers, a correlation between the electrical conductivity variation and the perturbation of the IR spectra is attempted.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Watson, J., Ihokura, K. and Coles, G.S.V., Meas. Sci. Technol. 4, 711 (1993).Google Scholar
2. Devlin, J.P. and Buch, V., Mikrochim. Acta 14, 57 (1997).Google Scholar
3. Riehemann, W., These proceedings.Google Scholar
4. Baraton, M.-I., High Temp. Chem. Processes 3, 545 (1994).Google Scholar
5. Tsyganenko, A.A. and Filimonov, V.N., Spectroscopy Letters 5, 477 (1972).Google Scholar
6. Primet, M., Pichat, P. and Mathieu, M.V., J. Phys. Chem. 75, 1216 (1971).Google Scholar
7. Ho, S.W., J. Chinese Chem. Soc. 43, 155 (1996).Google Scholar
8. Busca, G., Saussey, H., Saur, O., Lavalley, J.C. and Lorenzelli, V., Appl. Catal. 14, 245 (1985).Google Scholar
9. Morrow, B.A. and Hardin, A.H., J. Phys. Chem. 83, 3135 (1979).Google Scholar
10. Hertl, W. and Hair, M.L., J. Phys. Chem. 75, 2181 (1971).Google Scholar
11. Tsyganenko, A.A., Pozdnyakov, D.V. and Filimonov, V.N., J. Mol. Struct. 29, 299 (1975).Google Scholar
12. Smith, A. Lee, J. Chem. Phys. 21, 1997 (1953).Google Scholar
13. Colthup, N.B., Daly, L.H. and Wiberley, S.E., Introduction to Infrared and Raman Spectroscopy (Academic Press Ed., New York and London, 1964), p. 295.Google Scholar
14. Lenaerts, S., Roggen, J. and Maes, G., Spectrochim. Acta 51A (5), 883 (1995).Google Scholar
15. Göpel, W., Hesse, J. and Zemel, J.N. (eds.), Chemical Sensors, Verlag, Weinheim (1990).Google Scholar
16. Baraton, M.-I., Sensor and Actuators B 31, 33 (1996).Google Scholar
17. Chancel, F., Tribout, J. and Baraton, M.-I., Proceedings Euro Ceramic V, Trans Tech Publications, Zuerich, Switzerland, pp. 236239 (1997).Google Scholar