Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T07:41:44.593Z Has data issue: false hasContentIssue false

Effect of Substrate Misorientation on Heteroepitaxy with Large Lattice Mismatch: Ag/Si(111)

Published online by Cambridge University Press:  28 February 2011

D.C. McKenna
Affiliation:
Physics Department, Rensselaer Polytechnic Institute, Troy, NY 12180
K.-H. Park
Affiliation:
Physics Department, Rensselaer Polytechnic Institute, Troy, NY 12180
G.-C. Wang
Affiliation:
Physics Department, Rensselaer Polytechnic Institute, Troy, NY 12180
G.A. Smith
Affiliation:
Department of Physics, State University of New York, Albany, NY 12222.
Get access

Abstract

Epitaxial films of Ag(111) were grown by Molecular Beam Epitaxy (MBE) on small angle misoriented Si(111) substrates. The surface normal was tilted 0 to 6° away from the Si(111) axis toward the [112] direction. The structure of the films was analyzed by x-ray diffraction and MeV He+ ion channeling. Despite a large lattice mismatch, good quality epitaxial films, 600–1200 Å thick, were grown on the misoriented Si substrates. Interestingly, the angle between the Si(111) axis of the substrate and the Ag(111) axis of the film (the misalignment angle) is not zero. In contrast to the perfect alignment on a flat substrate, the Ag(111) axis is tilted away from the Si(111) axis toward the surface normal. Axial MeV He+ ion channeling shows the misalignment angle (up to .6°) increases with substrate misorientation angle (~1/10 substrate misorientation angle).

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

VI. References

1Park, K.-H., Jin, H.-S., Luo, L., Gibson, W. M., Wang, G.-C., and Lu, T.-M., Mat. Res. Soc. Symp. Proc. Vol. 102, 271(1988).Google Scholar
2Yamada, I., Inokawa, H., and Takagi, T., J. Appl. Phys. 56, 2746 (1984).Google Scholar
3Lelay, G., Surface Sci. 132, 169(1983).Google Scholar
4Wilson, R. J. and Chiang, S., Phys. Rev. Lett. 59, 2329(1987).Google Scholar
5Porter, T. L., Chang, C. S., and Tsong, I. S. T., Phys. Rev. Lett. 60, 1739 (1988).Google Scholar
6Park, K.-H., McKenna, D. C., Jin, H.-S., Wang, G.-C., Rajan, K., Smith, G. A., Luo, L. and Gibson, W. M., Mat. Res. Soc. Symp. Proc. Vol. 138, 545 (1989).Google Scholar
7Ishizaka, A. and Shiraki, Y., J. of Electrochem. Soc. 133, 666 (1986).Google Scholar
8LeGoues, F. K., Liehr, M., and Renier, M., Mat. Res. Soc. Symp. Proc. Vol. 94, 121(1987).Google Scholar
9Park, K.-H., Smith, G. A., Rajan, K., and Wang, G.-C., Met. Trans. A, to be published.Google Scholar
10Feldman, L. C., Mayer, J., Picraux, S. T., Materials Analysis By Ion Channeling, Academic Press, New York, 1982) p. 163.Google Scholar
11Bai, G., Jamieson, D. N., Nicolet, M.-A., Vreeland, T., Mat. Res. Soc. Symp. Proc. Vol. 102, 259(1988).Google Scholar
12Schowalter, L. J., Mat. Res. Soc. Symp. Proc. Vol. 116, 3(1988).Google Scholar
13Matyi, R. J., Lee, J. W. and Schaake, H. F., J. of Electronic Materials 17, 87(1988).Google Scholar