Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T15:21:53.135Z Has data issue: false hasContentIssue false

Effect of Simulated Body Fluid on the Microstructure of Ferrimagnetic Bioglass-Ceramics

Published online by Cambridge University Press:  01 February 2011

N. I. Papanearchou
Affiliation:
Physics Department, Florida Atlantic University, Boca Raton, FL 33431
Th. Leventouri
Affiliation:
Physics Department, Florida Atlantic University, Boca Raton, FL 33431
A. C. Kis
Affiliation:
Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
A. Hotiu
Affiliation:
Physics Department, Florida Atlantic University, Boca Raton, FL 33431
I. M. Anderson
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge TN 37830 U.S.A
Get access

Abstract

The effect of simulated body fluid (SBF) on the structure and microstructure of ferrimagnetic bioglass ceramics (FBC) was investigated in series of samples in the system of the oxides [0.45(CaO, P2O5) (0.52-x)SiO2 xFe2O3 0.03Na2O], with X = 0.05, 0.10, 0.15, 0.20. Physical properties of the materials were studied as a function of processing parameters and time of immersion in SBF by x-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy dispersive x-ray spectroscopy (EDS). The in vitro experiment showed that bioactivity of the FBC varies with the composition of the oxides, heat treatment, and time of exposure in SBF in a non-systematic way. A surface layer of Si, P, Ca partially covers the Fe, O dendrites, while formation and size of pores is determined by the specific processing parameters of the materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kokubo, T., Ebisawa, Y., Sugimoto, Y., Kiyama, M., Ohura, K., Yamamuro, T., Hiraoka, M., and Abe, M., Bioceramics 3, 213 (1992).Google Scholar
2. Takegami, K., Sano, T., Wakabayashi, H., Sodona, J., Yamazaki, T., Morita, S., Shibuya, T., Uchida, A., J. Biomed. Mater. Res. 43, 210 (1998).Google Scholar
3. Hench, L. L., Splinter, R. J., Allen, W. C., and Greenlee, T. K. Jr, J. Biomed. Mater. Res. 2, 117 (1972).Google Scholar
4. Ikenaga, M., Ohura, K., Yamamuro, T., Kotoura, Y., Oka, M., and Kokubo, T., J. Orthopaedic Res. 11, 849 (1993).Google Scholar
5. Salinas, A. J., Roman, J., Vallet-Regi, M., Oliveira, J. M., Correia, R. N., and Fernandes, M. H., J. Biomat. 21, 251 (2000).Google Scholar
6. Kis, A. C., Leventouri, Th., and Thompson, J. R., Mater. Sci. Forum 473, 117 (2005).Google Scholar
7. Leventouri, Th., Kis, A. C., Thompson, J. R., and Anderson, I. M., J. Biomat., submitted.Google Scholar
8. Ebisawa, Y., Miyaji, F., Kokubo, T., Ohura, K., and Nakamura, T., J. Biomat. 18, 1277–84 (1997).Google Scholar
9. Li, R., Clark, A. E., and Hench, L. L., J. Appl. Biomat. 2, 231 (1991).Google Scholar