Article contents
The Effect Of Si And Mg Doping In The Microstructure Of Epitaxially Grown Gan
Published online by Cambridge University Press: 10 February 2011
Abstract
The effect of p- and n-type doping (using Mg and Si, respectively) in the microstructure of GaN, grown epitaxially on (0001)Al2O3 and (111)Si, is studied with X-ray absorption measurements at the N-K-edge. A distortion in the local microstructure around the N atom is detected in the undoped and the Mg doped samples. The N atom is 4-fold coordinated with n Ga atoms in the expected distance and 4-n atoms at a distance longer by 0.28Å, where 2.9 < n < 3.3. Such a distortion, which is attributed to the inward relaxation and the strong interaction between the Ga atoms surrounding the nitrogen vacancies (VN), does not exist in the Si doped sample (carrier concentration=1.57×1018cm−3) where the formation of VN is suppressed due to the n-type doping. However, in GaN:Si the N atom is undercoordinated with 3.3 nearest neighbors instead of 4. This undercoordination indicates the presence of VGa and/or NGa antisite defects. Finally, from the nearest neigbohr distances the lattice parameters were calculated and it is found that although the a and c vary by about 1.5%, the ratio of the lattice constants, c/a, remains constant and equal to 1.63.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1998
References
- 3
- Cited by