Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T07:37:02.966Z Has data issue: false hasContentIssue false

The Effect Of Si And Mg Doping In The Microstructure Of Epitaxially Grown Gan

Published online by Cambridge University Press:  10 February 2011

M. Katsikini
Affiliation:
Dept. of Physics, Aristotle Univ. of Thessaloniki, 54006 Thessaloniki, Greece Hahn-Meitner Institute (A.S.), Glienicker 100, 14109 Berlin, Germany
E. C. Paloura
Affiliation:
Dept. of Physics, Aristotle Univ. of Thessaloniki, 54006 Thessaloniki, Greece
M. Fieber-Erdmann
Affiliation:
Hahn-Meitner Institute (A.S.), Glienicker 100, 14109 Berlin, Germany
E. Holub-Krappe
Affiliation:
Hahn-Meitner Institute (A.S.), Glienicker 100, 14109 Berlin, Germany
T. D. Moustakas
Affiliation:
Photonics Center & Dept. of Electrical and Computer Engineering, Boston University, Boston MA 02215, U.S.A.
Get access

Abstract

The effect of p- and n-type doping (using Mg and Si, respectively) in the microstructure of GaN, grown epitaxially on (0001)Al2O3 and (111)Si, is studied with X-ray absorption measurements at the N-K-edge. A distortion in the local microstructure around the N atom is detected in the undoped and the Mg doped samples. The N atom is 4-fold coordinated with n Ga atoms in the expected distance and 4-n atoms at a distance longer by 0.28Å, where 2.9 < n < 3.3. Such a distortion, which is attributed to the inward relaxation and the strong interaction between the Ga atoms surrounding the nitrogen vacancies (VN), does not exist in the Si doped sample (carrier concentration=1.57×1018cm−3) where the formation of VN is suppressed due to the n-type doping. However, in GaN:Si the N atom is undercoordinated with 3.3 nearest neighbors instead of 4. This undercoordination indicates the presence of VGa and/or NGa antisite defects. Finally, from the nearest neigbohr distances the lattice parameters were calculated and it is found that although the a and c vary by about 1.5%, the ratio of the lattice constants, c/a, remains constant and equal to 1.63.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Cooper, J. A. in “Gallium Nitride I” p. 473, Vol. Ed. Pankove, J. I. and Moustakas, T. D., Academic Press 1998.Google Scholar
[2] Akasaki, I., Amano, H. in “Gallium Nitride r’ p. 459, Vol. Ed. Pankove, J. I. and Moustakas, T. D., Academic Press 1998.Google Scholar
[3] Properties of Group III Nitrides, edited by Edgar, J. H., (INSPEC, Exeter, 1994).Google Scholar
[4] Nakamura, S., Mukai, T., Senoh, M., Appl. Phys. Lett, 64, 1687(1994).10.1063/1.111832Google Scholar
[5] Perlin, P., Suski, T., Teisseyre, H., Lezszynski, M., Grzegory, I., Jun, J., Porowski, S., Boguslawski, P., Bernholc, J., Chervin, J. C., Polian, A., Moustakas, T. D., Phys. Rev. Lett., 75, 296 (1995).Google Scholar
[6] Mattila, T., Seitsonen, A. P., Neiminen, R. M., Phys. Rev. B, 54, 1474 (1996).10.1103/PhysRevB.54.1474Google Scholar
[7] Chen, H. M., Chen, Y. F., Lee, M. C., Feng, M. S., Phys. Rev. B, 56, 6942 (1997).10.1103/PhysRevB.56.6942Google Scholar
[8] Suski, T., Perlin, P., Teisseyre, H., Lezszynski, M., Grzegory, I., Jun, J., Bockowski, M., Porowski, S., Moustakas, T. D., Appl. Phys. Lett., 67, 2188 (1995).10.1063/1.115098Google Scholar
[9] Neugebauer, J., Van de Walle, C., Appl. Phys. Lett., 69, 503 (1996).10.1063/1.117767Google Scholar
[10] Saarinen, K., Laine, T, Kuisma, S., Nissilä, J., Hautojärvi, P., Dobrzynski, L., Baranowski, J. M., Pakula, K., Stepniewski, R., Wojdak, M., Wysmolek, A., Suski, T., Lezszynski, M., Grzegory, I., Porowski, S., Phys. Rev. Lett., 79, 3030 (1997).10.1103/PhysRevLett.79.3030Google Scholar
[11] Liu, H., Kim, J. K., Ludwig, M. H., Park, R. M., 71, 347 (1997).Google Scholar
[12] Neugebauer, J., Van de Walle, C., Phys. Rev. B, 50, 8067(1994).10.1103/PhysRevB.50.8067Google Scholar
[13] Boguslawski, P., Briggs, E. L., Bernholc, J., Phys. Rev. B, 51, 17255(1995).Google Scholar
[14] Teo, B. K., EXAFS: Basic Principles and Data analysis, (Springer, Berlin, 1986).10.1007/978-3-642-50031-2Google Scholar
[15] Moustakas, T. D., Molnar, R. J., Mat. Res. Soc. Proc., 281, 753 (1993).10.1557/PROC-281-753Google Scholar
[16] Petersen, H., Nucl. Instr. Methods, A246, 260(1986).10.1016/0168-9002(86)90086-0Google Scholar
[17] Tröger, L., Arvanitis, D., Rabus, H., Wenzel, L., Baberschke, K., Phys. Rev.B, 41, 7297 (1990).10.1103/PhysRevB.41.7297Google Scholar
[18] Katsikini, M., Paloura, E. C., Fieber-Erdmann, M., Kalomiros, J., Moustakas, T. D., Amano, H., Akasaki, l., Phys. Rev. B., 56, 13380(1997)10.1103/PhysRevB.56.13380Google Scholar
[19] Mustre de Leon, J., Rehr, J. J., Albers, R. C., Zabinsky, S. I., Phys. Rev. B 44, 3937 (1992).Google Scholar
[20] Sevillano, E., Meuth, H., Rehr, J. J., Phys. Rev. B20, 908(1979).Google Scholar
[21] Börnstein, Landoldt-, Zahlenwerte und Funktionen aus Naturwissenschaft und Technik, (Springer, Berlin, 1982).Google Scholar
[22] Södhr, J., NEXAFS spectroscopy, (Springer, Berlin, 1992).Google Scholar
[23] Katsikini, M., Paloura, E. C., Fieber-Erdmann, M., Moustakas, T. D., Amano, H., Akasaki, I., Proc. Mat. Res. Soc. Proc., 449, 459 (1997).Google Scholar
[24] Leszczynski, M., Teisseyre, H., Suski, T., Grzegory, I., Bockowski, M., Jun, J., Pakula, K., Baranowski, J. M., Foxon, C. T., Cheng, T. S., Appl. Phys. Lett. 69, 73(1996)10.1063/1.118123Google Scholar
[25] Lagerstedt, O. and Monemar, B., Phys.Rev. B 19, 3064 (1979).10.1103/PhysRevB.19.3064Google Scholar