Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-06T10:34:09.066Z Has data issue: false hasContentIssue false

Effect of Ru Impurities on Magnetoresistance in Co/Ru/Co(Ru) Sandwiches

Published online by Cambridge University Press:  15 February 2011

A. Dinia
Affiliation:
IPCMS-GEMM UMR 46 CNRS-ULP, 23 rue du Loess 67037 Strasbourg, France
K. Rahmouni
Affiliation:
IPCMS-GEMM UMR 46 CNRS-ULP, 23 rue du Loess 67037 Strasbourg, France
N. Persat
Affiliation:
IPCMS-GEMM UMR 46 CNRS-ULP, 23 rue du Loess 67037 Strasbourg, France
D. Stoeffler
Affiliation:
IPCMS-GEMM UMR 46 CNRS-ULP, 23 rue du Loess 67037 Strasbourg, France
K. Ounadjela
Affiliation:
IPCMS-GEMM UMR 46 CNRS-ULP, 23 rue du Loess 67037 Strasbourg, France
H.A.M. van den Berg
Affiliation:
Siemens AG, ZT MF 1, Postfach 3220, D-91050 Erlangen, Germany
Get access

Abstract

Magnetoresistance (MR) measurements have been performed on two series of Co(3.2 nm)/Ru(x=0.5 to 3 nm)/Co(3.2 nm) and Co(3.2 nm)/Ru(x)/Co.92Ru.08 (3.2 nm) sandwiches prepared by ultra high vacuum evaporation onto mica substrates. At 300 K, all samples of the first series present giant magnetoresistance (GMR) whereas the samples of the second series, and with the same Ru spacer thickness, show an inverse GMR. This inverse GMR is induced by alloying the second Co layer with 8 at% Ru and can be attributed to the change of the scattering coefficients ratio (α) between the two magnetic layers. Indeed, for the first Co layer the scattering coefficient ratio a1 = p↓/↑> 1. However, for the second magnetic layer, alloying Co and Ru may induce an increase of the density of states at the Fermi level for majority spin electrons and as a consequence 0C2 = p↓/↑< 1

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Baibich, N.M., Broto, J.M., Fért, A., Nguyen, N., Daw, Van, Petroff, F., Etienne, P., Creuset, G., Friederich, A. and Chazelas, J., Phys. Rev. Lett 61, 2472 (1988).Google Scholar
2. Binasch, G., Grünberg, P., Saurenbach, F. and Zinn, W., Phys. Rev. B 39, 4828 (1989).Google Scholar
3. Hasegawa, , Phys. Rev. B 51, 3655 (1995).Google Scholar
4. George, J.M., Pereira, L.G., Barthélémy, A., Petroíf, F., Stèren, L., Duvail, J. L., Fert, A., Loloee, R., Holody, P., and Schroeder, P.A., Phys. Rev. Lett. 72, 408 (1994).Google Scholar
5. Renard, J.P., Bruno, P., Mégy, R., Bartenlian, B., Beauvillain, P., Chappert, C., Dupas, C., Kolb, E., Mulloy, M., Veillet, P., and Vélu, E., Phys. Rev. B 51, 12821 (1995).Google Scholar
6. Ounadjela, K., Muller, D., Dinia, A., Arbaoui, A., and Panissod, P., Phys. Rev. B 45 7768 (1992).Google Scholar
7. Parkin, S.S.P., More, N., and Roche, K.P., Phys. Rev. Lett. 64, 2304 (1990).Google Scholar
8. Bloemen, P.J.H., van Kersteren, H.W., Swagten, H.J.M. and de Jonge, W.J.M., Phys. Rev B 50, 13505 (1994).Google Scholar
9. Dinia, A., and Ounadjela, K., J. Magn. Mag. Mater. 146, 66 (1995).Google Scholar
10. Ounadjela, K., Zhou, Li., Stamps, R., Hehn, M., Zhang, Z., Wigen, P., and Gregg, J., J. Magn. Magn. Mater. 156, 267 (1996).Google Scholar
11. Pieron-Bohnes, U.V. and al Solid Thin Films 275, 115 (1996).Google Scholar