Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T14:16:40.614Z Has data issue: false hasContentIssue false

The effect of rapid solidification and grain size on the transformation temperatures of Ni-44,8wt%Ti melt spun alloy

Published online by Cambridge University Press:  22 February 2012

G. C. S. Anselmo
Affiliation:
UAEM, Universidade Federal de Campina Grande, Aprígio Veloso, 882 – Caixa, Posta 10069 - 58429-900 – Campina Grande - PB – [email protected], [email protected]
W. B. de Castro*
Affiliation:
UAEM, Universidade Federal de Campina Grande, Aprígio Veloso, 882 – Caixa, Posta 10069 - 58429-900 – Campina Grande - PB – [email protected], [email protected]
C. J. de Araújo
Affiliation:
UAEM, Universidade Federal de Campina Grande, Aprígio Veloso, 882 – Caixa, Posta 10069 - 58429-900 – Campina Grande - PB – [email protected], [email protected]
Get access

Abstract

Ribbons of the Ni-44.8wt%Ti shape memory alloy are prepared through the melt spinning technique. The study is focused on investigating the effect of the rapid solidification and grain size at characteristic start martensitic (Ms), final martensitic (Mf), start austenite (As) and final austenite (Af) transformation temperatures. Changes on martensitic transformation temperatures in Ti45Ni55 melt spun ribbons are observed as grain size is reduced. Results of optical microscopy and differential scanning calorimetry (DSC) are used to associate grain size with transformation temperatures.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Freed, Y., Aboudi, J., International Journal of Solids and Structures, vol. 46, 2009, pp. 16341647.Google Scholar
[2] Bellouard, Y., Materials Science and Engineering, vol. A 481482, 2008, pp. 582589.Google Scholar
[3] Morawiec, H., Lelatko, J., Stróz, D., Gigla, M., Materials Science and Engineering, vol. A273275, 1999, pp. 708712.Google Scholar
[4] Lin, K. N., and Wu, S. K., Journal of Alloys and Compounds, vol. 424, 2006, pp.171175.Google Scholar
[5] Zhang, L., Xie, C., Wu, J., Journal of Alloys and Compounds, vol. 432, 2007, pp. 318322.Google Scholar
[6] Zhang, X. and Sehitoglu, H., Materials Science and Engineering, vol A 374, 2004, pp. 292302.Google Scholar
[7] Sittner, P., Landa, M., Lukás, P. and Novák, V., Mechanics of Materials, vol. 38, 2000, pp. 475492.Google Scholar
[8] Zhou, Y., Zhang, J., Fan, G., Ding, X., Sun, J., Ren, X., Otsuka, K., Acta Materialia, vol. 53, 2005, pp. 53655377.Google Scholar
[9] Zarnetta, R., Kõnig, D., Zamponi, C., Aghajani, A., Frenzel, J., Eggeler, G., Ludwig, A., Acta Materialia, vol. 57, 2009, pp. 41694177.Google Scholar
[10] Wu, L., Chang, S. and Wu, S., Journal of Alloys and Compounds, vol. 505, 2010, pp.7680.Google Scholar