Published online by Cambridge University Press: 01 February 2011
The effect of infrared absorption on SiC sublimation growth was numerically investigated. At first, absorption coefficient was estimated as function of doping concentration. Then temperature distribution inside a crucible was numerically analyzed with taking account of absorption in growing crystal. It was pointed out that temperature distribution in a growing crystal strongly depends on absorption coefficient, i.e. doping concentration. As increasing the absorption coefficient, the growth front temperature and temperature gradient inside a growing crystal increase. It might cause large thermal stress and affect the grown crystal quality. This agrees well with growth features in experiment. The growth condition should be determined with taking account of absorption coefficient, i.e. doping concentration.