Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-20T00:46:45.073Z Has data issue: false hasContentIssue false

Effect of Precursors on Lithium Infiltrated Silica Gels Studied by Xps

Published online by Cambridge University Press:  28 February 2011

S.F. Ho
Affiliation:
Rutgers-The State University of New Jersey, Ceramics Dept., P.O. Box 909, Piscataway, NJ 08855–0909.
L. C. Klein
Affiliation:
Rutgers-The State University of New Jersey, Ceramics Dept., P.O. Box 909, Piscataway, NJ 08855–0909.
Get access

Abstract

Lithium silicate gels of composition 15 mole % lithia - 85 mole % silica were prepared by soaking highly porous silica gels in aqueous LiNO3 or methanolic LiOH solutions. The fracture surfaces of these samples were studied by X-ray photoelectron spectroscopy (XPS). High resolution XPS core level spectra were collected such that both chemical shift and atomic concentration could be determined. While the average lithium content was slightly higher in LiNO3 gels, only some of the lithium was associated with the silica network. In contrast, most of the lithium in LiOH gels was associated with the network.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Klein, L. C., Solid State Ionics 32/33 639 (1988).Google Scholar
2. de Lambilly, H. and Klein, L. C., J. Non-Cryst. Solids 102 269 (1988).Google Scholar
3. Wallace, S. and Hench, L. L., Cer. Eng. Sci. Proc., 5 568 (1984).Google Scholar
4. Le Bars, N. and Klein, L. C., J. Non-Cryst. Solids (1990) to appear.Google Scholar
5. Szu, S. P., Greenblatt, M. and Klein, L. C., J. Non-Cryst. Solids 122 (1990) to appear.Google Scholar
6. Shoup, R. D., in Ultrastructure Processing of Advanced Ceramics, Eds. Mackenzie, J.D. and Ulrich, D. R. (John Wiley & Sons, NY, 1984) p 347.Google Scholar
7. Szu, S. P., Klein, L. C. and Greenblatt, M., J. Non-Cryst. Solids, (1990) to appear.Google Scholar
8. Schwartz, I., Anderson, P., de Lambilly, H. and Klein, L. C., J. Non-Cryst. Solids 83 391 (1986).Google Scholar
9. Ho, S. F., Klein, L. C. and Caracciolo, R., J. Non-Cryst. Solids 120 267 (1990).Google Scholar
10. de Lambilly, H. and Klein, L. C., J. Non-Cryst. Solids 109 69 (1989).Google Scholar
11. Goldman, D. S., Phys. Chem. Glasses 22 128 (1986).Google Scholar
12. Jen, J. S. and Kalinowski, M. R., J. Non-Cryst. Solids 38, 39 21 (1979).Google Scholar
13. Bruckner, R., Chun, H-U. and Goretzki, H., Glastechn. Ber., 51 1 (1978).Google Scholar
14. Nasu, H., Heo, J. and Mackenzie, J. D., J. Non-Cryst. Solids 99 140 (1988).Google Scholar
15. Caracciolo, R. and Garofalini, S. H., J. Am. Ceram. Soc., 71 C346 (1988).Google Scholar
16. Wagner, C. D., Riggs, W. M., Davis, L. E. and Moulder, J. F., Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corp., Eden Prairie, MN, 1979.Google Scholar
17. Clark, D. T. and Thomas, H. R., J. Polymer Science: Polymer Chemistry Edition 16 791 (1978).Google Scholar
18. Copperthwaite, R. G., S. Afr. J. Chem., 36 125 (1983).Google Scholar
19. Brow, R. K., J. Non-Cryst. Solids, 107 1 (1988).Google Scholar
20. Aduru, S., Contarini, S. and Rabalais, J. W., J. Phys. Chem., 90 1683 (1986).Google Scholar