Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T15:55:50.288Z Has data issue: false hasContentIssue false

Effect of Pore Morphology on the Electrochemical Properties of Electric Double Layer Carbon Cryogel Supercapacitors

Published online by Cambridge University Press:  01 February 2011

Betzaida Batalla Garcia
Affiliation:
[email protected], University of Washington, Materials Science and Engineering, 302M Roberts Hall, Box 352120, Seattle, WA, 98195-2120, United States
Aaron M. Feaver
Affiliation:
[email protected], EnerG2 LLC, 810 3rd Avenue, Suite 120, Seattle, WA, 98104, United States
Richard Champion
Affiliation:
[email protected], University of Washington, Materials Science and Engineering, 302M Roberts Hall, Box 352120, Seattle, WA, 98195-2120, United States
Qifeng Zhang
Affiliation:
[email protected]>, University of Washington, Materials Science and Engineering, 302M Roberts Hall, Box 352120, Seattle, WA, 98195-2120, United States
Tim T. Fister
Affiliation:
[email protected], University of Washington, Physics, Seattle, WA, 98195, United States
Kenneth P. Nagle
Affiliation:
[email protected], University of Washington, Physics, Seattle, WA, 98195, United States
Gerald T. Seidler
Affiliation:
[email protected], University of Washington, Physics, Seattle, WA, 98195, United States
Guozhong Cao
Affiliation:
gzcao@ u.washington.edu, University of Washington, Materials Science and Engineering, 302M Roberts Hall, Box 352120, Seattle, WA, 98195-2120, United States
Get access

Abstract

In this study a group of resorcinol-formaldehyde carbon cryogels (CC) have been processed chemically, via catalysis and activation, to obtain varied nanostructures and pore size distributions. To understand the relation between structure and electrochemical properties the capacitor can be studied as a dielectric system composed of a porous electrode and the electrolyte (Tetraethylammonium tetrafluoroborate in propylene carbonate). Using Electrochemical impedance spectroscopy (EIS) the complex capacitance and power are used to study the behavior of the system below the relaxation frequency fo (φ = −45°). Therefore, the relaxation of the capacitor system at the low frequency range, f < fo, may be used as a measure of pore/electrolyte interaction. The approach here proposed also allows for a direct experimental characterization of the capacitance and power at low frequencies where small pores are likely to affect the diffusion dynamics of the electrolyte molecules. The results suggest a correlation between the occurrence of small micropores and that of high power losses that are related to the resistive element produced at the low frequency range. Moreover, the impact of the micropore structure upon the supercapacitor's performance is apparent in its capacitance and energy as well. In addition to the complex power and capacitance other measurements including BET Nitrogen sorption, cyclic voltammetry, galvanic cycling and X-Ray Raman Scattering were used to characterize the samples and support these results.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tamon, H., Ishizaka, H., Yamamoto, T., and Suzuki, T., Carbon 38, 1099 (2000).Google Scholar
2. Lee, J. G, Kim, J. Y, and Kim, S. H, J. Power Sources 160, 1495 (2006).Google Scholar
3. Babic, B., Kaluderovic, B., Vracar, L., and Krstajic, N., Carbon 42, 2617 (2004).Google Scholar
4. Song, H. K, Jang, J. H, Kim, J. J, and Oh, S. M, Electrochem. Commun. 8, 1191 (2006).Google Scholar
5. Lee, J. G, Pyun, S. I, and Kim, C. H, J. Solid. State. Electr. 8, 110 (2004).Google Scholar
6. Itagaki, M., Suzuki, S., Shitanda, I., Watanabe, K. and Nakazawa, H., J. Power Sources, 164, 415 (2007).Google Scholar
7. Barsoukov, E. and Macdonald, J. R, Impedance Spectroscopy (John Wiley and Sons, Inc, 2005).Google Scholar
8. Sanabria, H. and Miller, J. H, Phys. Rev. E 74, 9 (2006).Google Scholar
9. Batalla, B., Sinha, G., and Aliev, F., Mol. Cryst. Liq. Crys. A 331, 1981 (1999).Google Scholar
10. Taberna, P. L, Simon, P., and Fauvarque, J. F, J. Electrochem. Soc. 150, A292 (2003).Google Scholar
11. Jang, J. H, Yoon, S., Ka, B. H, Jung, Y. H, and Oh, S. M, J. Electrochem. Soc. 152, A1418 (2005).Google Scholar
12. Jang, J. H and Oh, S. M., J. Electrochem. Soc. 151, A571 (2004).Google Scholar
13. Pekala, R. W, J. Mater. Sci. 24, 3221 (1989).Google Scholar
14. Feaver, A. and Cao, G. Z., Carbon 44, 590 (2006).Google Scholar
15. Taberna, P. L, Portet, C., and Simon, P., Appl. Phys. A-Mater. 82, 639646 (2006).Google Scholar
16. Khomenko, V., Frackowiak, E., and Beguin, F., Electrochim. Acta. 50, 24992506 (2005).Google Scholar
17. Stoeckli, H. F, Carbon 28, 16 (1990)Google Scholar
18. Fister, T. T, Seidler, G. T, Wharton, L., Battle, A. R, Ellis, T. B, Cross, J. O, Macrander, A. T, Elam, W. T, Tyson, T. A, and Qian, Q., Rev. Sci. Instrum. 77, 7 (2006).Google Scholar
19. Bergmann, U., Glatzel, P., and Cramer, S. P, Microchem J. 71, 221 (2002).Google Scholar
20. Stöhr, J., NEXAFS spectroscopy (Springer-Verlag, Berlin, 1992).Google Scholar
21. Silva, S. R. P., Properties of Amorphous Carbon (INSPEC, London, 2003).Google Scholar
22. Daud, W., Ali, W. S. W., and Sulaiman, M. Z, J. Chem. Technol. Biot. 78, 1 (2003).Google Scholar
23. Braun, A., Bartsch, M., Schnyder, B., Kotz, R., Haas, O., and Wokaun, A., Carbon 40, 375 (2002).Google Scholar
24. Blazewicz, S., Swiatkowski, A., and Trznadel, B. J, Carbon 37, 693 (1999).Google Scholar