Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-06T09:17:04.443Z Has data issue: false hasContentIssue false

Effect of Oxygen on the Formation of Dryetching Damage Introduced into Si-Substrate

Published online by Cambridge University Press:  10 February 2011

Koji Hamada
Affiliation:
ULSI Device Development Laboratories, NEC Corporation, 1120 Shimokuzawa, Sagamihara, Kanagawa 229-1198Japan
Tomohisa Kitano
Affiliation:
ULSI Device Development Laboratories, NEC Corporation, 1120 Shimokuzawa, Sagamihara, Kanagawa 229-1198Japan
Get access

Abstract

This paper reports the effects of oxygen in a Si substrate on dryetching damage during gate-electrode formation and side-wall formation. Different types of deep level traps were created in Czochralsi (CZ) and in p/p+-epitaxial wafers during side-wall formation. In comparison to the CZ wafers, a deep energy state and large hole capture cross section for the electrically active trap appears in the p/p+-epitaxial wafers. The depth profile of the deep trap in CZ wafers is shallower than that in p/p+-epitaxial wafers. This result indicates that the trap diffusivity in a CZ wafer is smaller than that in a p/p+-epitaxial wafer. Therefore, it suggests that creation of the trap in CZ wafers is influenced by the oxygen within the silicon. From results, the origin of the trap was identified to be carbon-oxygen complexes in the CZ wafer and carbon complexes in the p/p+-epitaxial wafer. Thus, the oxygen in the Si substrate plays a role in the formation of carbon-oxygen complexes and in suppressing the trap introduced into the Si substrate during SiO2 etching.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fonash, S. J., Ashok, S. and Singh, R., Appl. Phys. Lett. 39, 23 (1981).Google Scholar
2. Matsumoto, H. and Sugano, T., J. Elechem. Soc. 129, 2823 (1982).Google Scholar
3. Henry, A., Awadelkarim, O. O., Lindstrom, L., and Oehrlein, G. S., J. Appl. Phys. 66, 5388 (1989).Google Scholar
4. Benton, J. L., Michel, J., Kimerling, L. C., Weir, B. E., and Gottscho, R. A., J. Electronic Materials, Vol. 20, No. 9, 643 (1991).Google Scholar
5. Hamada, K. and Kitano, T., Extended Abstracts of the 1997 Conf. on Solid States Devices and Materials, Hamamatsu, 452 (1997).Google Scholar
6. Sze, S. M., Physics of Semiconductor Devices, 2nd ed. (New York Wiley, 1981).Google Scholar
7. Watkins, G. D. and Brower, K. L., Phys. Rev. Lett. 36. 1329 (1976).Google Scholar
8. Kimerling, L. C., Blood, P., and Gibbons, W. M., In Defects and Radiation Effects in Semiconductors-1987 (Edited by Albany, J. H.), p. 237. Inst. Phys. Conf. Ser. 46. London (1979).Google Scholar
9. Mooney, P. M., Cheng, L. J., Suli, M., Gerson, J. D., and Corbett, J. W., Phys. Rev. B15. 3936 (1977).Google Scholar
10. Brower, K. L., Phys. Rev. B9. 2607 (1974).Google Scholar
11. Asom, M. T., Benton, J. L., Sauer, R., and Kimerling, L.C., Appl. Phys. Lett. 51 (4), 27. (1987).Google Scholar
12. Lee, Y. H., Corbett, J. W., and Brower, K. L., Phys. Stat. Sol. (a) 41, 637 (1977).Google Scholar
13. Watanabe, M. O., Taguchi, M., Kanzaki, K., and Zohta, Y., J. J. Appl. Phys, 22 (2), 281 (1983).Google Scholar
14. Henry, A., Awadelkarim, O. O., Monemar, B., Lindstrom, L., Bestwick, T. D., and Oehrlein, G. S., J. Elechem. Soc. 138 (4), 1138 (1991).Google Scholar
15. Benton, J. L., Kennedy, M. A., Michel, J., and Kimerling, L.C., Materials Science Forum. 83–87. 1433 (1992).Google Scholar
16. Awadelkarim, O. O., Gu, T., Ditizio, R.A., Mikulan, P. I., Fonash, S. J., Rembetski, J. F., and Chan, Y. D., J. Vac. Sci. technol. A 11(4), 1332 (1993).Google Scholar