Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T18:03:02.604Z Has data issue: false hasContentIssue false

The Effect of Oxygen on Diffusion and Compounding at Ni-GaAs(100) Interfaces

Published online by Cambridge University Press:  22 February 2011

J. S. Solomon
Affiliation:
University of Dayton Research Institute, 300 College Park, Avenue Dayton, Ohio 45469
D. R. Thomas
Affiliation:
University of Dayton Research Institute, 300 College Park, Avenue Dayton, Ohio 45469
S. R. Smith
Affiliation:
University of Dayton Research Institute, 300 College Park, Avenue Dayton, Ohio 45469
Get access

Abstract

The effects of the presence of surface oxides and oxygen incorporated in deposited Ni films on intermixing and compounding at Ni/GaAs(100) interfaces was investigated with Auger sputter profile analysis. The Ni/GaAs structures were heated in vacuum with a high intensity incoherent lamp. Chemical changes and compound distributions were extracted from profile data by factor analysis of the Auger peaks. Diffusion coefficients for Ni at different temperatures were obtained from profile concentration gradients. The results showed that Ni diffusion was faster and activation energy lower for clean versus oxide covered GaAs substrates. Without the presence of oxygen, Ni2 GaAs readily formed at 300°C while with oxygen, the formation of Ni-Ga and Ni-As compounds prevailed over the formation of a distinct Ni2 GaAs layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Braslau, N., Gunn, J. B., and Stables, J. L., Solid S. Electron. 10 (1967) 381.CrossRefGoogle Scholar
2. Wittmer, M., Pretorius, R., Mayer, J. W., and Nicolet, M.-A., Solid State Electron. 20 (1977) 433.CrossRefGoogle Scholar
3. Vidimari, F., Elec-tron Lett. 15 (1979) 675.Google Scholar
4. Ogawa, M., J. Appl. Phys. 51 (1980) 406.CrossRefGoogle Scholar
5. Heiblum, N., Nathan, M. I., and Chang, C. A., Solid State Electron. 25 (1982) 185.CrossRefGoogle Scholar
6. Robinson, G. Y., Solid State Electron. 10 (1967) 381.Google Scholar
7. gawa, V.O, Thin Solid Films 70 (1980) 181.Google Scholar
8. Kaun, T. S., Batson, P. E., Jackson, T. N., Ruprecht, H., and Wilkie, E. L., J. Appl. Phys. 54 (1983) 695.Google Scholar
9. Lahav, A. and Eizenber, M., Appl. Phys. Lett. 45 (1984) 256.CrossRefGoogle Scholar
10. Lahav, A., Eizenberg, M., and Komen, Y., to be piublished in Proceedings of the Materials Research Society, Symposium 10, 1984 Fall Meeting.Google Scholar
11. Kendelwicz, T., Petro, W. G., Williams, M. D., Pan, S. H., Lindau, I., and Spicer, A. E., Mat. Res. Soc. Symp. Proc. 25 (1984) 323.CrossRefGoogle Scholar
12. Ultra Violet Ozone Cleaner Model 0306, UVOCS Inc., Montgomeryville, PA 18936.Google Scholar
13. Cho, A. Y., Thin Solid Films 100 (1983) 291.CrossRefGoogle Scholar
14. Hall, P. H. and Morabito, J. M., Surf. Sci. 54 (1976) 79.CrossRefGoogle Scholar
15. Robinson, G. Y., Solid St. Electron. 18 (1975) 331.CrossRefGoogle Scholar
16. Malinowski, E. R. and Howery, D. G., Factor Analysis in Chemistry, John Wiley and Sons, NY (1980).Google Scholar
17. Caarenstroom, S. W., Appl. Surf. Sci. 7 (1981) 7.CrossRefGoogle Scholar
18. Mroczkowski, S. and Lichtman, D., Surf. Sci. 131 (1983) 159.Google Scholar