Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T23:02:52.711Z Has data issue: false hasContentIssue false

Effect of Oxygen and Nitrogen Doping on Mechanical Properties of Silicon Using Nanoindentation

Published online by Cambridge University Press:  15 March 2011

A. Karoui
Affiliation:
Materials Science and Engineering Dept.North Carolina State University, Raleigh, NC 27695-7916
G. Rozgonyi
Affiliation:
Materials Science and Engineering Dept.North Carolina State University, Raleigh, NC 27695-7916
T. Ciszek
Affiliation:
National Renewable Energy Laboratory, Golden, CO
Get access

Abstract

The effects of oxygen and nitrogen on the mechanical properties of Czochralski (CZ) and float zone silicon have been studied using nano-indentation. Nitrogen free FZ Si exhibited low hardness of 6.49 GPa and elastic modulus of 104 GPa. When doped with 2×1015cm−3 nitrogen, FZ Si hardness and elastic modulus increased to 8.2 and 182 GPa, respectively. In the near-surface denuded zone of N-doped CZ Si (N-CZ) the hardness correlates well with the O and N profiles. Distinct high hardness points, found in the O- and N- rich subsurface region, were attributed to precipitates. Nano-scratch tests of N-CZ Si confirmed the existence of hard phases, mostly small precipitates, whose density, estimated to be 2×1013cm−3, is in the range of previously suggested nuclei density in as-grown N-CZ silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Karoui, A. et al. , Dislocation Control in Silicon Wafers in a Susceptor Based Rapid Thermal Processing Tool, Proc. of 6th International Conference on Advanced Thermal Processing of Semiconductors, Kyoto, Japan, Sep.9-11,`98.Google Scholar
2. Yang, D., Que, D., and Sumino, K., Phys. Stat. Sol. (b) 210, 295 (1998).Google Scholar
3. Nakai, K. et al. , J. Appl. Phys., 89, 4301 (2001).Google Scholar
4. Verlinden, P.J., Blakers, A.W., Weber, K.J., Everett, V., Kerr, M. J., Stuckings, M. F., Gordeev, D., and Stocks, M. J., Sliver Solar Cells: A New Thin Crystalline Silicon Photovoltaic Technology, PVSEC-14, Jan. 2004.Google Scholar
5. Bergmann, R.B., Crystalline Si Thin-Film Solar Cells: a Review, Appl. Phys. A 69, 187194 (1999).Google Scholar
6. Abe, T., Kikuchi, K., Shira, S., and Muraoka, S., in “Semiconductor Silicon/1981”, Huff, H. R., Kriegler, J. and Takeishi, Y., eds., p.54, Softbound Symp. Serv. Electrochem. Soc., Pennington, New Jersey, 1981.Google Scholar
7. Sumino, K., Yonenaga, I., Imai, M. and Abe, T., J. Appl. Phys. 54, 5016 (1983).Google Scholar
8. Orlov, V.I., Iunin, Yu.L., Badylevich, M.V., Lysytskiy, O., Richter, H., Solid State Phenomena, 95–96, p 465 (2004)Google Scholar
9. Eremenko, V.G. Fedorov, A.V., Materials Science Forum, 196–201, pt.3, 1219 (1995).Google Scholar
10. Zozime, A; , Castaing, Materials Science & Engineering B, 42(1-3), 57 (1996).Google Scholar
11. Yonenaga, I., Diffusion and Defect Data Part B (Solid State Phenomena), 95–96, 423(2004).Google Scholar
12. Karoui, A., Rozgonyi, G. A., “Optimization of Silicon Crystal Growth and Wafer Processing for High Efficiency and High Mechanical Yield”, Ann. Rep.1 of Project: NREL, AAT-2-31605-05, Nov. 2002.Google Scholar
13. Cizek, T. F. et al. . Solar Energy Materials and Solar Cells 41/42, 6170 (1996).Google Scholar
14. Karoui, A., Karoui, F. Sahtout, Rozgonyi, G., and Yang, D., Solid State Phenomena, Vols. 82–84, 69 (2002).Google Scholar
15. Karoui, A., Karoui, F. Sahtout, Kvit, A., Rozgonyi, G., and Yang, D., Appl. Phys. Lett. 80(12), 2114 (2002).Google Scholar
16. Kvit, A., Karoui, A., Dusher, G., and Rozgonyi, G., Appl. Phys. Lett. Appl. Phys. Lett. 84(11), 1889 (2004)Google Scholar
17. Karoui, F. Sahtout, Karoui, A., and Rozgonyi, G., MSM 2000, San Diego, March 27-29, p. 98, (2000).Google Scholar
18. Karoui, A., Karoui, F. Sahtout, Kvit, A., Rozgonyi, G., and Yang, D., J. Appl. Phys. 80(12), 2114 (2004).Google Scholar
19. “Northstar” is a 90 cube corner tip with a radius of 40-60nm.Google Scholar
20. Johnson, K. L., Contact Mechanics, Cambridge University Press, Cambridge, 1985.Google Scholar
21. Bhushan, B., and Li, X., J. Mater. Res., 12(1), p. 54. (1997).Google Scholar
22. Bhushan, B., Nanotribology and Nanomechanics of MEMS Devices, IEEE Micro Electro Mechanical Systems Workshop,SanDiego, California, Feb. 1996, p.91-p.97 (1996).Google Scholar
23. Tersoff, J., Phys. Rev. B, 39(8), 5566 (1989).Google Scholar
24. Karoui, A., Atomistic Modeling of Impurity Atmospheres in Silicon and Dislocation Locking Effects, Symposium (P), MRS Spring Meeting, San Francisco, Apr.12-16, 2004.Google Scholar
25. CRC Materials Science and Engineering Handbook, p.473.Google Scholar
26. Karoui, A., to be published.Google Scholar
27. George, A., in Properties of Crystalline Silicon, ed. By Hull, R. (INSPEC, London, 1999), p.104.Google Scholar
28. Karoui, A., Karoui, F. Sahtout, Rozgonyi, G., Hourai, M., Sueoka, K., J. Electrochem. Soc. 150(12), G771 (2003)Google Scholar