Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T15:15:05.218Z Has data issue: false hasContentIssue false

Effect of O2 Partial Pressure on Post Annealed Ba2YCU3O7-δ Thin Films

Published online by Cambridge University Press:  26 February 2011

Julia M. PhUlips
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
M. P. Siegal
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
S. Y. Hou
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
T. H. Tiefel
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
J. H. Marshall
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
Get access

Abstract

Epitaxial films of Ba2YCu3O7-δ (BYCO) as thin as 250 å A and with Jc's approaching those of the best in situ grown films can be formed by co-evaporating BaF2, Y, and Cu followed by a two-stage anneal. These results extend the work on films > 2000 Å thick by R. Feenstra et al. [J. Appl. Phys. 69, 6569 (1991)]. High quality films of these thicknesses become possible if low oxygen partial pressure [p(O2) = 4.3 Torr] is used during the high temperature portion cf the anneal (Ta). The BYCO melt line is the upper limit for Ta. The use of low p(O2) shifts the window for stable BYCO film growth to lower temperature, which allows the formation of smooth films with greater microstructural disorder than is found in films grown in p(O2) = 740 Torr at higher Ta. The best films annealed in p(O2)=4.3 Torr have Jc values a factor of four higher than do comparable films annealed in P2=740 Torr. The relationship between the T required to grow films with the strongest pinning force and p(O2) is log independent of growth method (in situ or situ) over a range of five orders of magnitude of P(O2).

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Eom, C. B., Sun, J. Z., Lairson, B. M., Streiffer, S. K., Marshall, A. F., Yamamoto, K., Anlage, S. M., Bravman, J. C., and Geballe, T. H., Physica C, 171, 354 (1990).Google Scholar
2. Inam, A., Wu, X. D., Nazar, L., Hegde, M. S., Rogers, C. T., Venkatesan, T., Simon, R. W., Daly, K., Padamsee, H., Kirchgessner, J., Moffat, D., Rubin, D., Shu, Q. S., Kalokitis, D., Fathy, A., Pendrick, V., Brown, R., Brycki, B., Belohoubek, E., Drabeck, L., Gruner, G., Hammond, R., Gambie, F., Lairson, B. M., and Bravman, J. C., Appl. Phys. Lett. 56 1178 (1990).Google Scholar
3. Mankiewich, P. M., Schofield, J. H., Skocpol, W. J., Howard, R. E., Dayem, A. H., and Good, E., Appl. Phys. Lett. 51, 1753 (1987).Google Scholar
4. Mclntyre, P. C., Cima, M. J., Smith, J. A. Jr, Siegal, M. P., Phillips, J. M., and Hallock, R. B., J. Appl. Phys. 71, 1868 (1992).Google Scholar
5. Siegal, M. P., Phillips, J. M., van Dover, R. B., Tiefel, T. H., and Marshall, J. H., J. Appl. Phys. 68, 6353 (1990).Google Scholar
6. Siegal, M. P., Phillips, J. M., Hsieh, Y. -F., and Marshall, J. H., Physica C, 172, 282 (1990).Google Scholar
7. Mogro-Campero, A. and Turner, L. G., Appl. Phys. Lett. 58, 417 (1991).Google Scholar
8. Hammond, R. H. and Bormann, R., Physica C, 162–164, 703 (1989).Google Scholar
9. Feenstra, R., Lindemer, T. B., Budai, J. D., and Galloway, M. D., J. Appl. Phys. 69, 6569 (1991).Google Scholar
10. Bean, C. P., Phys. Rev. Lett. 8, 250 (1962).Google Scholar
11. Gyorgy, E. M., van Dover, R. B., Jackson, K. A., Schneemeyer, L. F., and Waszczak, J. V., Appl. Phys. Lett. 55, 283 (1989).Google Scholar
12. Siegal, M. P., Hou, S. Y., Phillips, J. M., Tiefel, T. H., and Marshall, J. H., submitted to J. Mater. Res.Google Scholar
13. Shinohara, K., Matijasevic, V., Rosenthal, P. A., Marshall, A. F., Hammond, R. H., and Beasley, M. R., Appl. Phys. Lett. 58, 756 (1991).Google Scholar
14. Siegal, M. P., Phillips, J. M., Hebard, A. F., van Dover, R. B., Farrow, R. C., Tiefel, T. H., and Marshall, J. H., J. Appl. Phys. 70, 4982 (1991).Google Scholar
15. Carlson, D. J., Siegal, M. P., Phillips, J. M., Tiefel, T. H., and Marshall, J. H., J. Mater. Res. 5, 2797 (1990).Google Scholar
16. Feenstra, R., Christen, D. K., Budai, J. D., Pennycook, S. J., Norton, D. P., Lowndes, D. H., Klabunde, C. E., and Galloway, M. D., in Proceedings ICAM 91, E-MRS Spring Meeting, Symposium Al : High Temperature Superconductor Thin Films, Strasbourg, France, May 27–31, 1991.Google Scholar
17. Eom, C. B., personal communication.Google Scholar
18. Laderman, S. S., Taber, R. C., Jacowitz, R. D., Moll, J. L., Eom, C. B., Hylton, T. L., Marshall, A. F., Geballe, T. H., and Beasley, M. R., Phys. Rev. B, 43, 2922 (1991).Google Scholar
19. Siegal, M. P., Hou, S. Y., Phillips, J. M., Tiefel, T. H., and Marshall, J. H., (unpublished).Google Scholar